
Impact of Temporal Subsampling on Accuracy and
Performance in Practical Video Classification

F. Scheidegger∗†, L. Cavigelli∗, M. Schaffner∗, A. C. I. Malossi†, C. Bekas†, L. Benini∗‡
∗ETH Zürich, 8092 Zürich, Switzerland

†IBM Research - Zürich, 8803 Rüschlikon, Switzerland
‡Università di Bologna, Italy

Abstract—In this paper we evaluate three state-of-the-art
neural-network-based approaches for large-scale video classifica-
tion, where the computational efficiency of the inference step is of
particular importance due to the ever increasing amount of data
throughput for video streams. Our evaluation focuses on finding
good efficiency vs. accuracy tradeoffs by evaluating different
network configurations and parameterizations. In particular, we
investigate the use of different temporal subsampling strategies,
and show that they can be used to effectively trade computational
workload against classification accuracy. Using a subset of the
YouTube-8M dataset, we demonstrate that workload reductions
in the order of 10×, 50× and 100× can be achieved with
accuracy reductions of only 1.3%, 6.2% and 10.8%, respectively.
Our results show that temporal subsampling is a simple and
generic approach that behaves consistently over the considered
classification pipelines and which does not require retraining of
the underlying networks.

I. INTRODUCTION

Over the last years, two key enablers have driven the success
of machine learning, and in particular neural network (NN)
based approaches. First, the availability of large scale datasets
with known ground truth [1–9] enables supervised learning
for complex tasks such as face recognition [1], [2], action
recognition [3], [4] or video classification [8–10]. Second,
the availability of increased computational performance in
today’s computing systems typically achieved with graphics
processing units (GPUs) enables to train large scale models.

State-of-the-art NNs for image classification typically have
10-200 million parameters and require 10-25 billion arithmetic
operations to perform inference for a single image [11]. Such
deep networks achieve high classification accuracies, but also
require a long training time [12]. While the race to improve
accuracy on challenges such as the ILSVRC [13] drives the
community to develop ever more complex models, this trend
is likely to continue with the increasing availability of video-
based datasets. In order for these NNs to remain economically
viable, it is important to keep the computational effort in mind
to reduce the costs involved when building practical systems
for large-scale inference, such as energy and infrastructure
expenditures [14]. In this paper, we consider the task of video
classification on large-scale datasets using single-frame and
multi-frame NN approaches, where the computational burden

This work was funded by the the European Union’s H2020 research and in-
novation programme under grant agreement No 732631, project OPRECOMP.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks
of International Business Machines Corporation in the United States, other
countries, or both. Other product and service names might be trademarks of
IBM or other companies.

is exacerbated by the fact that complete video sequences have
to be considered. We accelerate the inference step and evaluate
the impact of the temporal sampling on classification accuracy.
To this end, we make the following two contributions. First, we
compare three video classification approaches on a subset of
the YouTube-8M dataset [9] and report the achieved accuracy
and the associated computational workload. We then evalu-
ate temporal subsampling as a simple and efficient method
to extend video classification approaches to produce Pareto
optimal fronts of accuracy v. workload tradeoffs. We show the
generality of the approach by considering two frame subsam-
pling strategies and applying them to different configurations
of the three classification approaches. Temporal subsampling
does not require any changes nor retraining of the underlying
classification system.

II. RELATED WORK

Traditional video classification approaches [15–17] based
on global video descriptors have demonstrated success on
a variety of datasets. First, interest points are localized and
visual features are extracted, then compressed to a constant
length global descriptor. Second, a standard classifier (e.g.,
SVM) predicts the final class.

Recent methods improve by adopting a data driven approach
where also the features are learned. In [18], [19] the 3D
extension of convolutional NNs (CNNs) is explored. However,
this approach does not scale well to long videos and has thus
only been applied to short video clips with a length in the order
of seconds. Ng et al. [10] show that different feature pooling
architectures employing long short-term memory (LSTM) [20]
are better suited to video classification.

However, end-to-end training approaches become infeasible
for very large datasets as the YouTube-8M. It contains 50
years of video footage, and even sequential processing of the
individual frames becomes a demanding task. Finding good
NN configurations is non-trivial due manual tuning and many
learning and validation cycles, which may take weeks or even
months. E.g., assuming that a single GPU allows processing
at a rate of ∼4.3 fps1, one pass through the 5.8 M training
videos of YouTube-8M with an average of 230 frames/video
requires around 9.8 years. Renting a cloud infrastructure with
multiple GPUs allows to cut the total amount of time but the
required costs are in the order of 75 000 $2. The estimated

1Based on the time required for one forward/backward pass for GoogLeNet
using Nervana Systems’ neon library on a Nvidia GTX Titan X (Maxwell)
GPU https://github.com/soumith/convnet-benchmarks.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1031

cost of complete end-to-end training with the full dataset and
a typical amount of 100-1000 learning epochs is therefore
around 7.5 M $-75 M $, which is infeasible for most institu-
tions. To this end, the baseline methods published together
with the YouTube-8M dataset split the classification problem
into two steps. First, frames are mapped to feature vectors with
lower dimension using a state-of-the-art image classification
network (Inception-v3). Second, classification is performed on
the feature vectors. This approach has the advantage that pure
data driven learning is still possible and computational costs
remain tractable.

Fast inference methods, such as Low Rank Expansions [21]
reach speedups < 5× at accuracy drops < 1%. XNOR-
Nets [22] gain 58× in speed at 12.5% accuracy reduction on
ImageNet. Even though, we solve the more complex problem
of video classification, our approach is on par with Low Rank
Expansions and outperforms the XNOR-Nets trade-off.

III. PRACTICAL VIDEO CLASSIFICATION SYSTEMS

Our approach targets a large-scale machine learning system
based on the two-step approach introduced together with the
YouTube-8M dataset. For practical scalability reasons, we
avoid end-to-end learning approaches since the raw videos of
that dataset amount to a data volume of ∼ 1Petabyte.

In this two-step approach, frame feature vectors are obtained
by first extracting features using a CNN trained on an image
classification task (without the final classification layer), before
applying principal component analysis (PCA) to reduce the
dimensionality to 1024 per frame and feature vector. These
feature vectors are then used for video classification in a sec-
ond step. Such a decomposition of the classification problem
allows a practical intermediate representation of the video and
the handling of the training of two separate subproblems. The
vectors have been precomputed using the Inception-v3 CNN
and are available as part of the YouTube dataset, which is
convenient from a practical viewpoint as it enables to perform
evaluations without having to evaluate the complete CNN.

In our evaluation, we consider three classification pipelines:
a) Feature vector aggregation [9], that produces a global

video descriptor (GVD) which is then classified using a
fully-connected neural network (FCNN).

b) Frame-based classification (FBC) [9] with an FCNN,
followed by an aggregation of the classification results.

c) A long short-term memory (LSTM) architecture [10]
processes the complete vector sequence of the video.

The three classification system variants are illustrated in
Figure 1, and only differ in the way the 1024 dimensional
feature vectors are processed, as explained in the following.

A. Global Video Descriptor (GVD)

As noted by the authors of YouTube-8M [9], GVD exhibits
three advantages: fixed-length vectors allow to apply standard
learning, the amount of data involved in learning is reduced

2Based on a 650 $/month rent for a high-end GPU https://aws.amazon.com/
ec2/instance-types/p2/.

Frame 1 Frame 2 Frame 3 Frame 4 Frame L

CInception

x1=0 x2=1 x3=0 x4=1 xL=1

4.8G
MACs

LSTM

S

d2
+ + +

CL-Cell

+

8.6M
MACs

8.6M
MACs

CLSTM

43M
MACs

c)

FBC

CFCNN
d2

++ ++
21M
MACs

b)

GVD

d1+ + + +
a)

d)

Feature
Vector
Computation

Fig. 1. Overview of the 3 video classification approaches. First, an inference
with the Inception-v3 network (d) produces frame level feature vectors.
Second, GVD (a), FBC (b) and LSTM (c) are applied to classify the video.
Frames i are skipped if the corresponding decision vector entries xi are 0.
This is illustrated with red crosses for a regular temporal subsampling of 2×.

by the average length of the video (230×), and the approach
is generic. As a baseline, we compute the video average
feature vector µ as mean over the feature sequence. Since the
provided feature vectors are already normalized, no further
normalization is required and the resulting GVD µ is fed
directly into a FCNN for final classification. The chosen
network configurations for this evaluation are listed in Table I.

The FCNN has 1024 input dimensions, followed by two
dense layers that end in H1 and H2 neurons, each using ReLU
activations which are defined element-wise as x 7→ max(0, x).
The third, final layer outputs a softmax-normalized prediction
for each class obtained by x 7→ ex

‖ex‖1
.

B. Frame Based Classification (FBC)

This approach maps each per-frame feature vector to a video
class prediction, and all predictions of a video sequence are
then aggregated to form the final classification. Learning of
the FCNN is achieved by using the global label of a particular
video sequence as local ground-truth label for all frames
in that video. The final classification is obtained either by
average or max-voting aggregation of the per-frame results. We
observed that averaging consistently outperforms a max-voting
aggregation and thus use the averaging scheme henceforth.

C. Long Short-Term Memory (LSTM)

LSTM cells [20] are used to implement a recurrent neural
network (RNN) [23], that enables learning of high-level con-
cepts from the temporal information of the input sequence.
Long-update chains in RNN architectures may cause vanishing
or exploding gradient problems [24]. LSTMs are able to
mitigate that problem by having an internal state storing long
temporal information, whereas the rest of the structure (input,
output and forget gates) is modeled to capture local (short-
term) effects. Table I lists the hyper-parameter choice used in
our evaluations. H denotes the dimensionality of the involved
hidden state and S is the amount of stacked LSTM-cell chains

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1032

TABLE I
HYPER-PARAMETER CONFIGURATIONS AND CAUSED WORKLOADS IN
TERMS OF MILLION MAC OPERATIONS PER BUILDING BLOCK. FCNN

CONFIGURATIONS ARE USED IN BOTH, THE GVD AND FBC PIPELINES.

FCNN k=0 1 2 3 4 5 6 7

H1 4096 4096 1024 512 256 128 64 32
H2 1024 4096 1024 512 256 128 64 32
CFCNN 8.4 21 2.1 0.8 0.33 0.15 0.07 0.03

LSTM k=0 1 2 3 4 5 6 7

H 32 64 128 512 1024 32 64 128
S 1 1 1 1 1 2 2 2
CLSTM 0.02 0.05 0.16 2.21 8.62 0.03 0.09 0.32

LSTM k=8 9 10 11 12 13 14

H 512 1024 32 64 128 512 1024
S 2 2 5 5 5 5 5
CLSTM 4.42 17.2 0.08 0.23 0.79 11.0 43.0

over the full sequence. The LSTM configuration k = 13
corresponds to the proposed configuration from [10] and k = 9
refers to the configuration used in [9].

D. Computational Complexity

The number of MAC operations reliably estimates the
inference time for a wide class of CNNs [25]. Hence, we state
the workload for one video inference as:

CGVD = L/r · (CInception + d1) + CFCNNk
,

CFBC = L/r · (CInception + CFCNNk
+ d2) ,

CLSTM = L/r · (CInception + CLSTMk
+ d2) ,

(1)

where L refers to the length of the video sequence, d1 = 1024
is the dimension of the used feature vectors, d2 = 20 the
number of classes, CInception = 4.8 · 109 the workload to
compute the feature vectors, CFCNNk

and CLSTMk
the FCNN

configurations according Table I, S the number of stacked
layers and r the temporal subsampling factor that will be
introduced in more detail in the next section. Due to the in-
volved orders of magnitude, we have that CInception � CFCNNk

,
CInception � CLSTMk

and CInception � d1,2. Therefore, we
observe that CGVD ≈ CFBC ≈ CLSTM ≈ L/r · CInception.

IV. TEMPORAL SUBSAMPLING

More than 99% of the inference workload is caused by
the first frame-level feature extraction step, irrespective of the
actual classifier chosen. It is therefore crucial to introduce
optimizations leading to fewer computations in the first step.

There are two common approaches to achieve this. First, a
more efficient network architecture than Inception-v3 could be
sought by exploring different network topologies, parametriza-
tions and quantizations such as in [26]. Second, a more
efficient CNN evaluation engine could be built by means
of specialized hardware [27]. While the first approach re-
quires several long training and validation cycles, the second
approach requires custom hardware design which is a time
consuming task. In this paper, we explore a third approach,
where temporal subsampling is used to significantly reduce
the amount of CNN evaluations in the first step. Note that this
is orthogonal to the other two approaches and does not involve
any expensive training iterations of the large CNN in the first

step. In this paper, we use the full length of the videos to train
the three architectures described in Section III, and introduce
temporal subsampling during inference to save computational
complexity. Reducing the workload of the inference step is
especially critical in large-scale datacenter applications where
video footage is being uploaded at an ever increasing rate3. We
define a decision function d(.) that outputs a Boolean vector
x ∈ {0, 1}L determining whether a given frame at index i in
the video sequence is processed (xi = 1) or skipped (xi = 0).
A skipped frame allows to save a full CNN evaluation in the
first step, and the computational workload decreases linearly
with the amount of skipped frames.

A. Subsampling Strategies

Regular subsampling dreg(L, r) reduces the total amount of
frames L by a fixed factor r in an uniform manner, and has
the advantage that it can be applied at almost no cost. Prior-
based subsampling leverages the observation that the sampling
positions of the selected frames have a significant impact on
the overall classification outcome.

For illustration, we consider the conditional probability
p(f sufficient|fr) given the relative frame position fr ∈
[0, 1] that a single frame f is sufficient to correctly classify
the full video sequence. We empirically estimate φ(fr) =
Interpolate(Histogram(f is sufficient)) as interpolated aggre-
gation of normalized histograms where correct classification
results from Section III-B are binned according fr. Figure 2
shows that frames taken from the middle of the video se-
quences are more likely to lead to correct classification out-
comes. This is probably due to the fact that most videos
contain lead-in and lead-out portions. The prior-based subsam-
pling strategy dprior(L, r, φ) introduces this a-priory knowledge
by randomly drawing bL/rc frame positions from a distribu-
tion that is obtained by scaling φ(fr) to match the sequence
length L.

V. EVALUATION AND RESULTS

Section V-A gives more details on the employed dataset,
Section V-B and Section V-C explain the training procedure
and Section V-D finally states the comparison of achieved
accuracy versus workload tradeoffs.

A. Subset of YouTube-8M

To shorten the development cycle and make the evaluation
practicable, we constructed a subset of the YouTube-8M
dataset, a multi-labeled dataset with an average 1.8 of entity
labels per video. We filter out all multi-labeled videos in order
to create a single label problem. Table II states our choice, we
assumed as practical resource constraint a data volume limit
that fits on a single GPU (Nvidia GeForce GTX Titan X, 12GB
RAM). Our subset allows hyper-parameter tuning and multiple
repetitions of the full training to state the variance caused due
to the random NN initialization in reasonable time. Note that
this runtime reduction approach is suitable in our case, since

3For example, several hundreds video hours are uploaded to YouTube every
minute https://fortunelords.com/youtube-statistics/.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1033

0 0.2 0.4 0.6 0.8 1fr

0.85

0.9

0.95

1

1.05

1.1
(f
r)

(.)
mean

Fig. 2. Estimated probability density φ(fr) that a single frame alone is
sufficient to correctly classify the complete video sequence. Prior-based
subsampling improves accuracy by using φ(fr) to bias sampling points to
frames that are beneficial for classification.

we are not interested in maximizing the absolute classification
accuracy, but in the relative accuracy degradation behaviour
due to temporal subsampling. The feature vectors provided in
the YouTube dataset have been sampled at a rate of 1Hz (one
vector per second of video) and the subsampling factor r used
in this paper is relative to that rate.

B. FCNN Training

We used the Adam optimizer [28] to train the FCNNs by
minimizing the average of the cross entropy with a learning
rate of 10−4. Note that both the GVD and FBC pipelines em-
ploy the same FCNN configurations listed in Table I. A batch
size of 200 input samples is employed, and the initialization
of the weights is achieved using random normal distributed
values with a standard deviation of 0.1. The bias values are
initialized with a constant offset of 0.1 to break the symmetry.
Before the start of each epoch all input samples are shuffled
with a uniform distribution over all possible permutations of
the input samples. Training is run for 100 epochs.

C. LSTM Training

Similar to [9], we unrolled the LSTM for 60 iterations and
trained on sequences of 60 consecutive frames at a random
offset within the video for 380 epochs. The loss function
weighs all individual frame losses with increasing values
starting from 1/N for the first frame, up to 1 for the last frame
in order to enhance learning and classification performance as
in [9], [10]. Predictions are computed by considering the full
length video. During training we used a dropout factor of 0.5.

D. Results & Discussion

TABLE II
DATASET USED IN THIS PAPER

Original Training Set Validation Set

Number of Classes 4 800 20 20
Videos per Class 2229† 500 100
Total Videos 8 264 650 10 000 2000
Average Video Length 229.6 227.8 228.2
Number of frames 1.9 · 109 2 277 717 456 427
Feature data volume ∼ 1PB ∼ 9GB ∼ 2GB
† Average value, videos/entity ∈ [120, 539 926] [9]

10-2 10-1 100

Sampling Rate r -1

35

40

45

50

55

60

65

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 [%

]

Best GVD, H1=H2=64

Best FBC, H1=H2=64
Best LSTM, H=64, S=1

Fig. 3. Comparison of accuracy achieved with best configurations of GVD,
FBC and LSTM approach as function of subsampling.

In all experiments, the subsampling factor has been swept
over the range 1× to 100×. The accuracy is measured as Top-
k rate with k = 1, i.e., the number of correct classified videos
relative to all classified videos.

Figure 3 compares the accuracy behaviour of the three
approaches depending on regular subsampling. We explain the
stronger decay in case of the LSTM approach by the fact that
LSTM was explicitly trained to learn temporal information
which is partially destroyed by subsampling. Still, the best
configurations remain ordered as a function of subsampling.

Figure 4 shows the obtained classification accuracy versus
computational workload for the GVD (a), FBC (b) and LSTM
(c) approaches using regular subsampling. Even though dif-
ferent NNs and different classification systems are considered,
the characteristic caused by subsampling is consistent which
demonstrates the generality of the approach. In the range
where r ≤ 5 the accuracy degradation is negligible. For larger
r factors, subsampling gradually decreases the classification
accuracy. Interestingly, FBC seems to be more robust against
subsampling than the other two approaches. The best LSTM
and GVD configurations lose around 8% of classification
accuracy from r = 50× to r = 100×, whereas FBC only
loses 5%. Figure 4 d), e) and f) show the additional accuracy
improvements (in terms of percentage differences) achieved
when employing prior-based subsampling instead of regular
subsampling. Positive values are in favour of prior-based
subsampling. Noise levels appear more pronounced due the
zoomed-in view. Leveraging prior knowledge in aggressively
subsampled regions allows to improve the accuracy around
2% for the GVD and FBC approaches, and around 4% for the
LSTM at negligible extra cost.

VI. CONCLUSION

We considered three video classification approaches that
employ a two-step classification procedure and presented
accuracy and computational complexity results for various NN
configurations. Our evaluations show that, while the LSTM-
based pipeline outperforms a simple GVD approach, similar
classification accuracies as achieved by the LSTM approach
can be reached by aggregating frame-based classifier (FBC)
results. The FBC method has the advantage that it is consid-
erably easier to train than an LSTM approach.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1034

1010 1011 1012

Inference Workload [MACs]

25

30

35

40

45

50

55

60

65
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y
[%

]

Best, H
1
=H

2
=64

H
1
=1024, H

2
=1024

H
1
=4096, H

2
=1024

Worst, H
1
=H

2
=4096

1010 1011 1012

Inference Workload [MACs]

25

30

35

40

45

50

55

60

65

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

[%
]

Best, H
1
=H

2
=64

H
1
=H

2
=256

H
1
=4096, H

2
=1024

Worst, H
1
=H

2
=512

1010 1011 1012

Inference Workload [MACs]

25

30

35

40

45

50

55

60

65

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

[%
]

Best, H=64, S=1
H=1024, S=1
H=32, S=2
H=1024, S=5
Worst, H=32, S=5

1010 1011 1012

Inference Workload [MACs]

-4

-2

0

2

4

6

A
cc

ur
ac

y
Im

pr
ov

m
en

t

mean

1010 1011 1012

Inference Workload [MACs]

-4

-2

0

2

4

6

A
cc

ur
ac

y
Im

pr
ov

m
en

t
mean

1010 1011 1012

Inference Workload [MACs]

-4

-2

0

2

4

6

A
cc

ur
ac

y
Im

pr
ov

m
en

t

mean

a) GVD b) FBC c) LSTM

d) GVD e) FBC f) LSTM

++
+

++
+ ++

+

r=10

r=50

r=50

r=20
r=10r=20 r=50

r=20 r=10

Fig. 4. Comparison of accuracy versus workload tradeoffs achieved with regular subsampling for different configurations for the a) GVD b) FBC and c)
LSTM approach. For each approach, a selection of representative curves is shown, comprising the best, the worst, and two in-between configurations from
Table I. Temporal subsampling allows to effectively trade computational workload against classification accuracy, thereby generating a wide range of Pareto
optimal operating points. Improvements due to prior-based subsamplig over regular subsampling are quantified in d-f) for the three approaches.

Further, we note that most of the computational burden
stems from the first step involving the evaluation of a large
CNN, and investigate temporal subsampling as a simple yet
effective way to trade computational complexity against clas-
sification accuracy. We introduce two different subsampling
strategies and show that significant workload reductions in
the order of 10× can be achieved with negligible impact on
classification accuracy. Larger workload reductions up to 100×
are possible, leading to accuracy degradations in the order of
10% for the best NN configurations.

Temporal subsampling is a simple and generic approach that
does not require retraining of large CNNs, and which behaves
consistently over the considered classification pipelines. It is
straightforward to implement, and therefore well suited for
static or dynamic load balancing and cost optimization in
large-scale, industrial video classification systems.

REFERENCES

[1] L. Wolf, T. Hassner, and I. Maoz, “Face Recognition in Unconstrained
Videos with Matched Background Similarity,” in IEEE CVPR, 2011.

[2] G. Zhao, X. Huang et al., “Facial Expression Recognition From Near-
Infrared Videos,” Image and Vision Computing, vol. 29, no. 9, 2011.

[3] L. Xia, C.-C. Chen, and J. Aggarwal, “View Invariant Human Action
Recognition using Histograms of 3D Joints,” in IEEE CVPRW, 2012.

[4] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles,
“ActivityNet: A Large-Scale Video Benchmark for Human Activity
Understanding,” in IEEE CVPR, June 2015.

[5] K. G. Derpanis, M. Lecce, K. Daniilidis, and R. P. Wildes, “Dynamic
Scene Understanding: The Role of Orientation Features in Space and
Time in Scene Classification,” in IEEE CVPR, 2012, pp. 1306–1313.

[6] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of
101 Human Actions Classes From Videos in The Wild,” CoRR, vol.
abs/1212.0402, 2012.

[7] O. Kliper-Gross, T. Hassner, and L. Wolf, “The Action Similarity
Labeling Challenge,” IEEE TPAMI, vol. 34, no. 3, pp. 615–621, 2012.

[8] A. Karpathy, G. Toderici et al., “Large-scale Video Classification with
Convolutional Neural Networks,” in IEEE CVPR, 2014.

[9] S. Abu-El-Haija, N. Kothari et al., “Youtube-8M: A Large-Scale Video
Classification Benchmark,” arXiv:1609.08675, 2016.

[10] J. Yue-Hei Ng, M. Hausknecht et al., “Beyond Short Snippets: Deep
Networks for Video Classification,” in IEEE VCPR, June 2015.

[11] C. Szegedy, V. Vanhoucke et al., “Rethinking the Inception Architecture
for Computer Vision,” CoRR, vol. abs/1512.00567, 2015.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[13] J. Deng, W. Dong et al., “Imagenet: A large-scale hierarchical image
database,” in IEEE CVPR, 2009, pp. 248–255.

[14] A. Shehabi, S. J. Smith et al., “United states data center energy usage
report,” 06/2016 2016.

[15] J. Liu, J. Luo, and M. Shah, “Recognizing Realistic Actions from Videos
“In The Wild”,” in IEEE CVPR, 2009, pp. 1996–2003.

[16] J. C. Niebles, C.-W. Chen, and L. Fei-Fei, “Modeling temporal structure
of decomposable motion segments for activity classification,” in ECCV.
Springer, 2010, pp. 392–405.

[17] H. Wang, M. M. Ullah et al., “Evaluation of Local Spatio-Temporal
Features for Action Recognition,” in BMVC. BMVA Press, 2009.

[18] S. Ji, W. Xu, M. Yang, and K. Yu, “3D Convolutional Neural Networks
for Human Action Recognition,” IEEE TPAMI, vol. 35, no. 1, 2013.

[19] M. Baccouche, F. Mamalet et al., “Sequential Deep Learning for Human
Action Recognition,” in HBU. Springer, 2011, pp. 29–39.

[20] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convo-
lutional neural networks with low rank expansions,” arXiv preprint
arXiv:1405.3866, 2014.

[22] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks.
Cham: Springer International Publishing, 2016, pp. 525–542.

[23] T. Mikolov, M. Karafiát et al., “Recurrent neural network based language
model.” in Interspeech, vol. 2, 2010, p. 3.

[24] Y. Bengio, P. Simard, and P. Frasconi, “Learning Long-Term Dependen-
cies with Gradient Descent is Difficult,” IEEE TNNLS, 1994.

[25] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

[26] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016.

[27] K. Ovtcharov, O. Ruwase et al., “Accelerating deep convolutional neural
networks using specialized hardware,” Microsoft Research Whitepaper,
vol. 2, no. 11, 2015.

[28] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980, 2014.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1035

