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Abstract— In stress sensing, Window-derived Heart Rate Vari-
ability (W-HRV) methods are by far the most heavily used
feature extraction methods. However, these W-HRV methods
come with a variety of tradeoffs that motivate the development
of alternative methods in stress sensing. We compare our
method of using HeartBeat Morphology (HBM) features for
stress sensing to the traditional W-HRV method for feature
extraction. In order to adequately evaluate these methods we
conduct a Trier Social Stress Test (TSST) to elicit stress in a
group of 13 firefighters while recording their ECG, actigraphy,
and psychological self-assessment measures. We utilize the data
from this experiment to analyze both feature extraction methods
in terms of computational complexity, detection resolution
performance, and event localization performance. Our results
show that each method has an ideal niche for its use in stress
sensing. HBM features tend to be more effective in an online,
stress detection context. W-HRV shows to be more suitable for
offline post processing to determine the exact localization of the
stress event.

I. INTRODUCTION

Recent years have seen a surge in the popularity and
convenience of devices that collect physiological data [1].
This has led to numerous efforts to use this data for a wide
breadth of pertinent classification tasks such as the detection
of cardiac arrhythmia, stress, sleep stages, drug use, and
emotion [1], [2]. Success in these classification tasks would
have enormously broad and beneficial applications in many
areas of public health including: preventing car accidents,
increasing worker efficiency, mitigating health problems,
monitoring drug use more effectively and improving Human-
Computer Interaction [2].

Firefighting is one of the careers upon which stress has
the largest negative impact [3]. Firefighters are consistently
exposed to stressful and fatiguing situations, giving them a
higher risk of coronary diseases which account for a large
percentage of deaths among these professionals [3]. This
makes them prime candidates for stress sensing experiments.
In this way, simultaneously analyzing subject’s perceived
stress levels and physiological signals such as electrocar-
diogram (ECG) in firefighters, is the first step towards a
general stress sensing solution, applicable to all contexts [2],
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[4]. Since acute stress events induce physiological responses
by our cardiovascular and neuroendocrine systems, ECG-
derived features both in time and frequency domains have
been widely used for stress monitoring and are highly
correlated with subject’s stress and arousal state changes [4],
[5]. Indeed, numerous authors have been exploring the use
of ECG features in a human affect context. Most of these
groups focus primarily on affect detection using Window-
derived Heart Rate Variability (W-HRV) features [6], [7].
However, this latter method has drawbacks. While the use
of a window allows for a wide range of features to be used,
including spectral features, these windows are usually 80 to
300 seconds which deteriorates the temporal resolution and
increases the computational complexity of the detector in
which such windows are used.

Recently, we have shown that specific HeartBeat Morphol-
ogy (HBM) features based on temporal distances between
ECG fiducial points are able to differentiate “‘stressful”
from “non stressful” events in Firefighters (FFs), using a
laboratory protocol [4] composed by a stress inducer task
- the Trier Social Stress Test (TSST [8]). Considering the
drawbacks associated to W-HRV {features, we decided to
compare performance outcomes using W-HRV versus HBM
features. Based on knowledge of the HBM extraction process,
we hypothesized that the use of this method as opposed to
the W-HRV method could mitigate some of the drawbacks of
W-HRYV outlined above. In this paper we therefore examined
the extent to which these HBM features are useful in stress
event sensing, by conducting the same laboratory protocol
used in our past study [4] among 13 firefighters. In order
to evaluate these two methods, we utilized automatic algo-
rithms for stress event detection based on Machine Learning
techniques. We evaluated not only accuracy, but also time
resolution and computational rapidity of each method. Such
metrics could be of high importance, since stressful events
have been linked to abnormalities in cardiovascular functions
(e.g. arrhythmias, cardiomyopathy, etc) in healthy and non-
healthy persons [4], making prompt stress detection very
desirable.

II. METHODS
A. Description of the sample population dataset

A population sample of 13 FFs with a high age variability
(3 female, 10 male; age: 31 £ 11 years) from a Portuguese
Firefighter unit agreed to participate in this study - see
table 1. Participants with a history of cardiovascular disease
and/or prescription cardiovascular-related drug use were not
included in this experiment. This study was approved by the

1330



ISBN 978-0-9928626-7-1 © EURASIP 2017

2017 25th European Signal Processing Conference (EUSIPCO)

12 min. Smin. 15 min.
. aseiine || Reaction Time
© | Resding || Task(crrry) || Restt TssT
‘ % s gﬁ
| I

Wear Vitallacket®
(continuous recording)

5 min. 12 min. 5 min.
Reaction Time
Rest2 Task (CRTT2) Rest3

Fig. 1: Diagram of the protocol. VAS - Visual Analogue Scales. TSST -
Trier Social Stress Test.

University of Porto Ethics Committee and all the participants
signed the corresponding informed consent.

B. Description of the laboratory protocol

The applied laboratory protocol (figure 1) was conducted
in a previous study by our laboratory and proved to be a
suitable protocol to induce acute stress in FFs [4]. ECG
signals were continuously acquired throughout the duration
of the experiment (= 1 hour) using the VitalJ acket® [9] (V])
at 500 Hz from a single lead. The VJ is a wearable bio-
monitoring platform (in form of a t-shirt) able to collect ECG
signals in a real-time manner, without affecting daily activi-
ties of users. It also contains a 3-axis Accelerometer system,
allowing ECG signals correction for actigraphy profiles.

The laboratory protocol performed by volunteers was com-
posed of 3 main tasks during which they were comfortably
sat in a chair. For evaluating the impact of stress in cognitive
performance, a 2-choice reaction time task (CRTT) [10],
was conducted. Following this, the Trier Social Stress Test
(TSST) [8], a gold-standard psychological stress assessment
procedure, was applied. After subjects were exposed to the
stress condition, they performed again the simple CRTT
(CRTT?2) described above. Visual Analog Scales (VAS) [11]
were used for stress psychological self assessment after each
main task (after CRTTI, after TSST and after CRTT?2).

C. ECG processing and Features Extraction

Since the primary method for feature extraction in the
literature uses a W-HRYV approach [6], [7], where features are
extracted from a fixed-length time interval with each sample
representing a different shift of this interval, we compared
the accuracy achieved in the proposed classification problem
using W-HRV versus HBM. In this latter approach, each
heartbeat waveform is treated as a separate sample. In order
to compare the two methods, we created a separate set of
labeled samples for each method - see table II.

HBM Features Extraction:

ECG heartbeats acquired during the different stages of the

TABLE I: Dataset characterization. HB - heartbeats.

Number of Participants (N) 13
ECG Sampling Rate (Hz) 500
Total Length ECG acquired* (min) 1042

Average Length ECG per subject acquired (min) | 80 + 39
Total Number of HB analyzed* 26313
Total Number of “stressful” HB analyzed* 5550
20763

Total Number of ‘“non-stressful” HB analyzed*

*across subjects

protocol were considered as samples with the temporal
metrics extracted from each of these heartbeats as the fea-
tures that characterize each respective sample of the dataset.
ECG heartbeats (dataset samples) were therefore labeled as
belonging to a “stressful” or “non-stressful” event according
to the protocol stage in which they were acquired. Only the
heartbeats that were collected in the TSST portion of the
experiment were labeled as in the positive class, as per [4],
with all others labeled as being in the the negative class.

A set of nine features was extracted from each heartbeat
waveform. The features used in this approach were based on
temporal distances between fiducial points Q, R, S and T
and were extracted using a ECG morphology-based patent
pending [12] processing scheme adopted in our previous
study [4] - see figure 2. R points were the first fiducials
to be located, using the widely known Pan Tompkins algo-
rithm [13]. Considering that existing literature shows that the
best method for detecting ECG fiducial points is based on
low order polynomial filtering [14], the remaining fiducials
- Q, S and T - were located after applying a second order
Butterworth low-pass filter with a cut off frequency of 10 Hz
to the raw signal. Fiducial points were discovered based on
previously established physiological time intervals [15]. The
Q points were identified by computing the signal derivative
considering a time window of 0.10 seconds before each R
point. The last peak within this time window was marked as
point Q for each heartbeat. Point S was located by applying
a similar method, also based on signal derivatives. The
first temporal mark at which the derivative changed from
negative to positive values, 0.05 seconds after the R point,
was assigned as the point S. For locating the peak of the T
wave, it was determined the last temporal index where the
derivative of the signal changed from positive to negative
values, within a time window of 0.05 to 0.40 seconds after
each QRS complex, for each heartbeat.

QR, RT, ST and QRS segments were calculated as
depicted in figure 3. RR intervals were defined as the
interval between two consecutive R points. The index of
the beginning of QT was computed as the last point where
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Fig. 2: Portion of ECG from Subject 2, with fiducial points Q, R, S and
T; and points that contributed for extracting Q7" and ST intervals marked.
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Fig. 3: Sketch of a heartbeat waveform illustrating six of the nine temporal
intervals used in the classification task: QR segment; RT segment; ST
interval; QT interval; ST segment and QRS segment.

the derivative changed from positive to negative in a time
window of 0.03 seconds before each () point. The end of
the T wave was computed as the index corresponding to
the last point at which the signal derivative changed from
negative to positive values within 0.15 seconds after the T’
peak. ST¢ and QT intervals were also included. These are
the ST and QT intervals corrected for the interference of
heart rate for each heartbeat, using the Bazett Formula [16]:
QTc = £,STC - T (1)
VRR VRR

Through this process the QR, RT, ST, RR and QRS
segments, as well as the ST, QT, ST¢ and QT intervals
were calculated for each heartbeat. The Q7T segment was
also initially considered but revealed to be highly correlated
to several other features, it was excluded in the classification
task so as to reduce multicollinearity, leaving the remaining 9
features used in the HBM method - please see table II. Noisy
HBs were removed after computing all the nine temporal
distance measures, by identifying the HBs which did not
satisfy the following conditions [15]:

QR <0.075s and 0.200s < QT < 0.360s  (2)

W-HRYV Features Extraction:
A fixed window of length 80 seconds was chosen through
10-fold cross validation over our training set with a generic
Random Forest [17] classifier. An overlap of 80% was chosen
empirically so as to give the same time resolution as the
averaged HBM features, as described in subsection II-D.
Each window was labeled as belonging to a stress event
if the majority of the heartbeat waveforms contained in
this window were labeled as belonging to a stress event.
In accordance with the literature [6], [7], the Lomb-Scargle
Periodogram was calculated on the RR-intervals determined
with Pan Tompkins algorithm [13] and 6 spectral features
were extracted based on the power in each of several bands,
described in Table II [6], [7].
In addition to spectral features, we also extracted 5 time-
based HRV features (described in Table II) [6], [7].
A total of 11 W-HRV features were therefore extracted from
each window, contrasting with the 9 features in the HBM
method (Table II).

D. Classification Task

We trained and tested on the same person in our protocol
to evaluate the effectiveness of each method with regard to

within subject (rather than between subject) event sensing.
This was done by dividing the samples in each subject into
5 equally sized, random groups and using a leave-one-out
testing scheme. This was done 5 times such that in the
end, every sample in each subject’s time series had a score
associated with it. These scores were then un-permuted so as
to rearrange them back into the temporally sequential order
in which they had been collected. This gave us a vector
of scores for every sample in each subject’s time series, in
order. Using this score vector and the ground truth vector, we
compared HBM to W-HRV in b different standard metrics:
Accuracy, Precision, Recall, F1 Score, and the Area Under
the Receiver Operating Characteristic curve (AUROC).

Several classifiers were compared for use in evaluating
the effectiveness of HBM features versus W-HRV features.
Among these models were: Linear Support Vector Machines
(SVM), Kernel Support Vector Machines (K-SVM), K-NN
(K-Nearest Neighbor) and Random Forest [18]. We used 5-
fold cross validation grid search to find the best parameters
for each subject for each model. Number of models in
Random Forest was chosen by grid search from 2 to 70 in
increments of 2. SVM C' parameter grid search was from
10~* to 10* over factors of 10. The K-SVM sigma grid
search was from 10~ to 10* over factors of 10. K-NN K
grid search was from 1 to 20 by increments of 2.

After this was done, the model with the highest average
cross validation fold F1-Score for each subject was used for
the remainder of our experimentation and evaluation for that
respective subject. In every case, the model with the highest
performance on the validation set was a Random Forest
Classifier, differing in the number of trees used depending
on the subject and the method. The number of predictors
sampled from on each tree split was the square root of the
number of total predictors [17].

ITI. RESULTS AND DISCUSSION
We compared HBM with W-HRV in three main areas:

A. Computational Complexity

The HBM features require only a single pass through
the ECG signal to detect fiducial points and perform the
elementary operations necessary to derive the associated
features, then using a linear moving average filter (II-D),
making the entire HBM method O(n) in computation.

For each new shift of the W-HRV, 16 seconds are removed
from the end of the old window and the next 16 seconds of
the time series are added onto the front of the new window.
The Lomb Periodogram is derived for the entire new window.
The Lomb Periodogram is O(nlog(n)) [19]. The remaining
HRV features are O(n) making the entire W-HRV method
O(nlog(n)+n) (O(nlog(n))). This difference in computational
complexity suggests different niches in stress event sensing
where HBM features or W-HRV features shine. W-HRV fea-
tures may not be as applicable to online sensing or wearable
technology given the need for streamlined computation in
these areas. Instead, W-HRV may be more suited for offline
analysis of stress events.
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TABLE II: Enumeration of the features used in the classification task for each type.

HeartBeat Morphology (HBM) Features [4], [12] Windowed Heart Rate Variability (W-HRYV) Features [6], [7]

1. RR segment 1. Spectral power in [0-0.015] Hz

2. QR segment 2. Spectral power in [0.015-0.025] Hz band

3. RT segment Frequency Domain 3. Spectral power in [0.025-0.050] Hz band

4. ST interval quency s 4. Spectral power in [0.050-0.120] Hz band

5. ST¢ interval 5. Spectral power in [0.120-0.300] Hz band

6. QT interval 6. Spectral power in [0.300-0.400] Hz band

7. QT¢ interval 7. AVNN (average of NN-intervals)

8. ST segment 8. SDNN (standard deviation of N N-intervals)

9. QRS segment Time Domain 9. rMSSD (square root of the mean squared difference of successive NN intervals)
10. pNNS50 (number of pairs of successive NN intervals that differ by more than 50 ms)
11. RMS of the mean of the square of NN intervals

B. Stress Localization

Stress Localization is the process of determining the exact
temporal bounds of a stress event. The nature of stress
localization inherently gives equal importance to all samples
within the stress event. With this in mind, in order to evaluate
each method in this area, we used the metrics derived in II-
D. The mean over all 13 subjects, for each method, of each
of these metrics is shown in Table III.

TABLE III: Average test scores for each method.

\ HBM \ W-HRV
Accuracy | 0.90 0.90
Precision | 0.87 0.82
Recall 0.56 0.69
F1 Score 0.64 0.74
AUROC 0.95 0.93

The accuracy for each method is roughly equivalent, which
means that the total number of samples correctly classified
by each model was almost exactly the same. However,
accuracy can be misleading in data like ours, where there is
some degree of imbalance between the positive and negative
classes.

By evaluating all the performance measures of table III, W-
HRYV shows slight benefits in localization overall. We can see
that, while the HBM method shows slight improvements in
robustness (AUROC) and Precision, the W-HRV method has
a higher F1 score, indicating that it provides slightly better
localization information overall with regard to the stress
event. The W-HRV method appears to be more effective for
post processing the data offline when the goal is to determine
the exact beginning, end, and duration of the stress event.

C. Stress Detection

Unlike, Stress Localization, Stress Detection does not aim
to determine exact bounds on the support of the event.
Instead, it attempts to determine as soon as possible when
the event begins, in an online fashion. We use several
visualizations of this detection to evaluate how well each
method detects the stress event in each subject. Detection
in these visualizations was done by iterating sequentially
through the score vector (II-D). At each point in the time
series our detector triggers if the score of any subsequence
seen so far is past a certain score threshold. In this way, for
a given threshold value, we can generate the time at which
detection of the event would occur in a real world online
scenario and compare each method in that way.
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Fig. 5: Comparison between the HBM and the W-HRV features methods
in terms of percentage of the subjects, for which we detected the start of
the event sometime between —10% and 20% of the event duration.

As we can see in Figure 4, the HBM method on average
achieves much more timely and accurate detection than the
W-HRV method for many different threshold values. The
highlighted, application-specific “feasible region” shows a
time period during which detection must occur for the event
detection to be considered a success. For our purposes, we
chose —10 to 20% of the event duration from the true start
of the event. We can see that especially for lower threshold
values, the W-HRV method has many false positives that
occur far before the event begins. In comparison, the HBM
method shows to not suffer from this issue to such a
great degree, and is far more robust to different threshold
choices. The median is also plotted to mitigate the effects
from outliers on the visualization. While outliers affect both
methods heavily, the HBM method is more greatly impacted
by outliers, achieving near perfect results in it’s median
over subjects. We also found that the HBM method was
consistently able to achieve detection within the “feasible
region” for a larger number of subjects than W-HRV method
(Figure 5). The number of subjects for whom detection was
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Fig. 6: Histograms showing the number of subjects for whom our detector triggered in each given time range. Three histograms are shown above, each

one using a detector set to trigger at 0, 1, and 2 respectively.

achieved in each time period is also shown in Figure 6. It is
clear that both methods differ wildly in their distributions,
especially for low threshold values. A look at the graph for
threshold value of 0 validates our earlier interpretation that
the W-HRV method seems to have a high false positive early
triggering rate whereas the HBM method does not seem to
suffer from this shortcoming. It is also important to note
that these false positives occur far too early for them to be
interpreted as a “prediction” of the upcoming stress event.

IV. CONCLUSIONS

It is evident from this study that W-HRV and HBM have
specific niches in stress event sensing. W-HRV methods have
slightly higher “accuracy” (F1 Score), yet they require more
computation and do not achieve very good detection results.
In comparison, HBM methods require far less computation
((O(n)) computational complexity) and show excellent results
in the area of detection. This makes the HBM method a
perfect candidate for use in online processing and detection,
while W-HRV methods are possibly more suitable for offline
post-processing of the time series data.

The two methods become more similar, and seemingly
more accurate, for higher threshold values. Keep in mind that
this does not validate the practice blindly choosing higher
thresholds for all applications. In general, lower thresholds
yield earlier detection. Therefore, each application should
weigh the benefits of accurate detection with early detection.
To provide a fair comparison, we used a roughly equivalent
number of features for both and we did not partake in
extensive testing of different complex features derivable from
the HBM features. In the future, we hope to incorporate
features to account for temporal dependencies in the HBM,
while still maintaining the linear time complexity that the
current method enjoys. This may also allow us to eliminate
the noise-smoothing 16-beat moving average and increase
time resolution. Although we do not consider data leakage to
have been a prominent problem because of the small number
of features, in the future we intend to take measures to further
mitigate possible data leakage from time series data. For
example, conducting stress-evoking experiments that provide
more than one time series from each subject, or the use of
domain adaptation methods, would eliminate the need for
training and testing within the same time series.
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