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Abstract—The reassigned spectrogram can be used to improve
the readability of a time-frequency representation of a non-
stationary and multi-component signal. However for transient
signals the reassignment needs to be adapted in order to achieve
good localisation of the signal components. One approach is to
scale the reassignment. This paper shows that by adapting the
shape of the time window used with the spectrogram and by
scaling the reassignment, perfect localisation can be achieved
for a transient signal component. It is also shown that without
matching the shape of the window, perfect localisation is not
achieved. This is used to both identify the time-frequency centres
of components in a multi-component signal, and to detect the
shapes of the signal components. The scaled reassigned spectro-
gram with the matching shape window is shown to be able to
resolve close components and works well for multi-components
signals with noise. An echolocation signal from a beluga whale
(Delphinapterus leucas) provides an example of how the method
performs on a measured signal.

I. INTRODUCTION

For non-stationary signals the reassigned spectrogram (Re-
Spect) can improve the readability of the time-frequency
representation [1], [2]. The concentration of a component
is increased by reassigning mass to the centre of gravity,
squeezing the signal terms to be more localised, while cross-
terms are reduced by a smoothing of the specific distribution.
Recently, the theoretical expressions for the reassigned Gabor
spectrograms of Hermite functions have been derived [3], [4].
Although the Re-Spect gives perfect localisation of linear
chirps, this is not achieved for transient signals which are
common in for example marine biosonar research. Transient
signals can effectively be modelled by a linear combination of
Hermite basis functions [5], [6], [7], [8]. Perfect localisation of
a Gaussian function (first Hermite function) can be achieved by
the adaptable reassignment methods, the Levenberg-Marquardt
reassignment [9] and the scaled reassigned spectrogram (ScRe-
Spect) [10].

This paper builds on the ScRe-Spect to show that perfect
localisation in time and frequency can be achieved with
reassignment for higher order Hermite functions. Perfect lo-
calisation is possible if the shape of the time window used
with the spectrogram is matched with the shape of the signal
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component. It also shows that when the matching shape
window is not used, perfect localisation is not possible with
the ScRe-Spect. This can be used to detect the shape of
and localise the time-frequency centres of individual transient
components in a non-stationary signal.

To illustrate the use of the ScRe-Spect with matching shape
window this paper includes an example of an echolocation
signal from a beluga whale (Delphinapterus leucas). In this
field, there is a need for signal processing methods that
allows for analysis of the time dependence of each frequency
component within each echolocation signal [11], [12], [13].

In this paper, section II calculates the reassignment coor-
dinates for first and second Hermite signal components with
first and second Hermite time windows. The results are also
extended to multi-component signals. The performance of the
ScRe-Spect is evaluated in section III, by simulating transient
multi-component signals with noise. Section IV shows the
performance of the method on a measured echolocation signal
from a dolphin. Section V concludes the paper.

II. THE SCALED REASSIGNED SPECTROGRAM

The spectrogram of the signal x(t) using the window h(t)
is found from the short-time Fourier transform (STFT)

Shx (t, ω) =
∣∣Fhx (t, ω)∣∣2 =

∣∣∣∣∫ x(s)h∗(s− t)e−iωsds
∣∣∣∣2 . (1)

The Re-Spect, with reassignment to t̂x and ω̂x, is defined as

RShx (t, ω) =

∫ ∫
Shx (s, ξ)δ

(
t− t̂x(s, ξ), ω − ω̂x(s, ξ)

)
dsdξ,

(2)
where δ(t, ω) is the two-dimensional Dirac impulse defined
as
∫ ∫

f(t, ω)δ(t− t0, ω−ω0)dtdω = f(t0, ω0). As shown in
[10], the scaling factors ct and cω can be introduced and the
reassignment coordinates can be computed as

t̂x(t, ω) = t+ ctR

(
F thx (t, ω)

Fhx (t, ω)

)
,

ω̂x(t, ω) = ω − cωI

(
F
dh/dt
x (t, ω)

Fhx (t, ω)

)
,

(3)

where R and I are the real and imaginary parts respectively
and Fhx , F thx and F

dh/dt
x are STFTs with different time
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windows. If ct = cω = 1 the Re-Spect is obtained [4], [14].
Since the reassignment coordinates are calculated from STFTs
using the same signal values needed for the spectrogram and
only differs in the choice of time window, the computational
complexity of the ScRe-Spect is not drastically increased
compared the spectrogram.

A. The scaled reassigned spectrogram of multi-component
transient signals

A multi-component transient signal can be modelled as a
sum of Hermite functions

x(t) =
n∑
k=1

akxk(t− tk)e−iωkt, (4)

where xk(t) are Hermite basis functions, tk and ωk are
the time and frequency centres and ak the amplitudes. Due
to the linearity of the Fourier transform, the reassignment
vector is also linear [14]. For the calculations it is assumed
that the reassignment can be calculated for each component
individually. This is true for a signal with somewhat separated
components, in time or frequency. The spectrogram also obeys
time-frequency shift-invariance, meaning that further analysis
can be restricted to signals of the form xk(t) = gk(t) instead
of xk(t) = gk(t− tk)e−iωkt.

This paper analyses the unit energy Gaussian function
x1(t) = σ−1/2π−1/4e−

t2

2σ2 , and the unit energy second
Hermite function x2(t) = 21/2σ−3/2π−1/4te−

t2

2σ2 , as the
amplitude of the signal has no effect on the reassignment
coordinates, compare (3). The ScRe-Spect with perfect local-
isation of x1(t) using a Gaussian window is shown in [10].
The next section will show that the ScRe-Spect of a signal
x(t) = x1(t) + x2(t) with a Gaussian window will only give
perfect localisation to x1(t) while the energy of x2(t) remains
scattered, and when a second Hermite window is used, perfect
localisation will be obtained for x2(t) but not for x1(t).

B. Scaled reassignment with a Gaussian window

The reassignment coordinates for x1(t) using a window
h1(t) = x1(t), where the window and signal have the same
time length, are

t̂h1
x1
(t, ω) = t− ct

t

2
,

ω̂h1
x1
(t, ω) = ω − cω

ω

2
,

(5)

and perfect localisation is achieved when ct = cω = 2 [10].
To find the reassignment coordinates for x2(t) with h1(t), we
need to calculate the necessary STFTs, also assuming that the
time length of the signal and window are the same

Fh1
x2

(t, ω) =

√
2

σ2
√
π

∫
se−(s

2+(s−t)2)/(2σ2)e−iωsds

=

√
2

σ2
√
π
e−t

2/(2σ2)

∫
se−s

2/σ2+(t/σ2−iω)sds

=
t− iσ2ω√

2σ
e−(t

2/σ2+σ2ω2+i2tω)/4,

(6)

F th1
x2

(t, ω) =
√
2

σ2
√
π

∫
s(s− t)e−(s

2+(s−t)2)/(2σ2)e−iωsds

=
2σ2 − t2 − σ4ω2

2
√
2σ

e−(t
2/σ2+σ2ω2+i2tω)/4.

(7)

The derivative of h1(t) is dh1(t)/dt = −th1(t)/σ2, thus

F dh1/dt
x2

(t, ω) = − 1

σ2
F th1
x2

(t, ω). (8)

This gives the reassignment coordinates

t̂h1
x2
(t, ω) = t− ct

(
t

2
− σ2t

t2 + σ4ω2

)
,

ω̂h1
x2
(t, ω) = ω − cω

(
ω

2
− σ2ω

t2 + σ4ω

)
.

(9)

It can be seen that there exist no ct or cω so that(
t̂h1
x2
(t, ω), ω̂h1

x2
(t, ω)

)
= (0, 0), i.e. the centre of the compo-

nent, ∀ t, ω. Instead of perfect localisation of the component
x2(t), the reassigned energy will be located on ellipses, which
is also found for the reassigned Gabor spectrogram in [4].

C. Scaled reassignment with a second Hermite window

Using the second Hermite window, h2(t) = x2(t), with the
spectrogram, makes it possible to get perfect localisation to
x2(t) with scaled reassignment. For the calculations of the
reassignment coordinates it is assumed that the time length of
the window is the same as for the signal,

Fh2
x2

(t, ω) =
2

σ3
√
π

∫
s(s− t)e−(s

2+(s−t)2)/(2σ2)e−iωsds

=
2σ2 − t2 − σ4ω2

2σ2
e−(t

2/σ2+σ2ω2+i2tω)/4,

(10)

F th2
x2

(t, ω) =
2

σ3
√
π

∫
s(s− t)2e−(s

2+(s−t)2)/(2σ2)e−iωsds

=
w(t, ω)− 2σ2t− i6σ4ω

4σ2
e−(t

2/σ2+σ2ω2+i2tω)/4,

(11)

where w(t, ω) = t3+iσ2t2ω+σ4tω2+iσ6ω3. Since dh2/dt =
h2(t)/t− th2(t)/σ2, we get

F dh2/dt
x2

(t, ω) =
2

σ3
√
π

∫
se−(s

2+(s−t)2)/(2σ2)e−iωsds

− 1

σ2
F th2
x2

(t, ω)

=
6σ2t+ i2σ4ω − w(t, ω)

4σ4
e−(t

2/σ2+σ2ω2+i2tω)/4.

(12)

This gives the following reassignment coordinates

t̂h2
x2
(t, ω) = t− ct

t

2
,

ω̂h2
x2
(t, ω) = ω − cω

ω

2
.

(13)

It can be seen that by choosing ct = cω = 2 indeed(
t̂h1
x2
(t, ω), ω̂h1

x2
(t, ω)

)
= (0, 0) , ∀ t, ω and perfect localisation

in time and frequency is achieved.
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Fig. 1. Illustration of the spectrogram and the scaled reassignment of a signal with one Gaussian, (4, 4), and one second Hermite, (8, 8), signal component.
The spectrogram is shown by the gradient lines. The arrows represent the reassignment of the signal energy and the red areas show the most energy dense
areas in the ScRe-Spect; (a) Scaled reassignment with a Gaussian window; (b) Scaled reassignment with a second Hermite window.

Perfect time and frequency localisation is not possible when
using the second Hermite window with the Gaussian com-
ponent x1(t). This is shown by calculating the reassignment
coordinates,

Fh2
x1

(t, ω) = − t+ iσ2ω√
2σ

e−(t
2/σ2+σ2ω2+i2tω)/4, (14)

F th2
x1

(t, ω) =
2σ2 +

(
t+ iσ2ω

)2
2
√
2σ

e−(t
2/σ2+σ2ω2+i2tω)/4.

(15)

We remind us that dh2/dt = h2(t)/t−th2(t)/σ2, which gives

F dh2/dt
x1

(t, ω) =
2σ2 −

(
t+ iσ2ω

)2
2
√
2σ3

e−(t
2/σ2+σ2ω2+i2tω)/4.

(16)

This gives the reassignment coordinates

t̂h2
x1
(t, ω) = t− ct

(
t

2
+

σ2t

t2 + σ4ω2

)
,

ω̂h2
x1
(t, ω) = ω − cω

(
ω

2
+

σ2ω

t2 + σ4ω2

)
.

(17)

It can be seen that perfect localisation is not possible, even
if small values of both t̂h2

x1
(t, ω) and ω̂h2

x1
(t, ω) are possible if

ct = cω = 1 and t and ω are assumed not to be large, the
signal energy will be located on ellipses.

D. Detection and localisation of a multi-component signal

The reassignment coordinates and the resulting ScRe-Spect
of a multi-component signal x(t) = a1x1(t − t1)e−i2·f1πt +
a2x2(t− t2)e−i2·f2πt, where x1(t) is a Gaussian function and
x2(t) a second Hermite function, can easily be calculated by
a linear operation of the reassignment coordinates [14].

An illustration of the reassignment for such a multicom-
ponent signal, with (t1, f1) = (4, 4), (t2, f2) = (8, 8) and
ct = cω = 2, is shown in Fig. 1. The gradient lines show the
spectrogram, in Fig. 1(a) with a Gaussian window and in Fig.
1(b) with a second Hermite window. The arrows show how

the signal energy is reassigned and the red areas mark the
most energy dense parts in the ScRe-Spect. Fig. 1(a) shows
that the energy from the Gaussian component is reassigned to
a small area in the centre of the component, while the energy
from the second Hermite component is reassigned to a circle
around the centre of the component. In Fig. 1(b) the energy
from the Gaussian component is reassigned to a circle and the
energy from the second Hermite component is reassigned to a
small area in the centre of the component. There is also some
interaction between the components resulting in some small
interference after reassignment.

In Fig. 1(a) it can also be seen that some energy is moved
away from the centre of the second Hermite component. This
is due to that the reassignment coordinates (9) grow large when
t, ω → 0 and ct = cω = 2. This can also be seen in Fig.
1(b) for the Gaussian component. Similarly the reassignment
coordinates (17) grow when t, ω → 0 and ct = cω = 2.

III. SIMULATIONS

A multi-component signal with Gaussian and second Her-
mite components can be resolved with the ScRe-Spect using
Gaussian and second Hermite time windows. This is illustrated
by the simulated signal

x(n) = x1(n− 80)e−i2π0.14n + x2(n− 100)e−i2π0.18n

+ x3(n− 60)e−i2π0.19n + e(n),
(18)

where x1(n) and x2(n) are Gaussian functions and x3(n) a
second Hermite function, all with lengths around 60 samples,
and e(n) is white Gaussian noise, SNR = 15 dB, where
SNR is the average total signal energy to the variance of
the noise. Fig. 2 shows the spectrogram and ScRe-Spect. The
spectrogram and the ScRe-Spect, the illustrations are made in
3D to clearly show the difference in amplitude of the peaks,
i.e. the energy density. In Fig. 2(a), showing the spectrogram
with a Gaussian window, only one clear peak is visible and
it is located at (n, f) = (97, 0.167), however in Fig. 2(c), the
ScRe-Spect with a Gaussian window, two peaks are clearly
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Fig. 2. Detection and time-frequency localisation of individual components
in a multi-component transient signal; (a) The spectrogram with Gaussian
window; (b) The spectrogram with second Hermite window; (c) The ScRe-
Spect with Gaussian window; (d) The ScRe-Spect with second Hermite
window.

Fig. 3. Two component signal (19), f1 = 0.14, with and without noise, SNR
15 dB.

seen at (80, 0.140) and (101, 0.180), which are very close to
the true centres of the two Gaussian components. Fig. 2(b),
the spectrogram with a second Hermite window, shows many
peaks and is hard to interpret, however Fig. 2(d) shows only
one large peak at (60, 0.190), also present in the corresponding
spectrogram, which is the true centre of the second Hermite
component.

A. Close components

Detection and localisation of components becomes harder
if they are close in time and frequency. For a simulated signal
with two components

x(n) = x1(n− 80)e−i2πf1n + x2(n− 60)e−i2π0.2n + e(n),
(19)

where x1(n) is a Gaussian function, x2(n) a second Hermite
function and e(n) is white Gaussian noise, SNR 15 dB, we
can vary the normalised frequency f1 to change the frequency
distance between the components. The components overlap in
time, see Fig. 3 where f1 = 0.14. We let 0.1 ≤ f1 ≤ 0.19
and simulate 200 signals with different noise for each f1,
to find the average sample-frequency (time-frequency) centres
from the ScRe-Spect for both signal components. The sample-
frequency centres are obtained by finding the largest peak in

Fig. 4. The frequency distance between the two components in signal (19) is
varied to get the average sample-frequency centres of the largest peaks in the
ScRe-Spect with Gaussian and second Hermite window respectively, as well
as a 95% confidence interval, obtained from 200 noise simulations. The true
sample-frequency centres of both signal components are also marked; (a) The
sample centres of the largest peaks; (b) The frequency centres of the largest
peaks.

Fig. 5. The SNR of the signal (19), f1 = 0.14, is varied to get the average
sample-frequency centres of the largest peaks in the ScRe-Spect with Gaussian
and second Hermite window respectively, as well as a 95% confidence interval,
obtained from 200 noise simulations. The true sample-frequency centres of
both signal components are also marked; (a) The sample centre of the largest
peaks; (b) The frequency centres of the largest peaks.

the ScRe-Spect, with a Gaussian window for the Gaussian
component and a second Hermite window for the second
Hermite component. The average sample centres and the 95%
confidence intervals are shown in Fig. 4(a). Fig. 4(b) shows the
average frequency centres and the 95% confidence intervals.
It can be seen that the largest peak in the ScRe-Spect with a
matched shape window accurately represents the centre of the
signal component until the normalised frequency distance is
only 0.03.

B. Noise sensitivity

Detection and localisation of components also becomes
harder if the signal has low SNR. For a sampled signal (19)
with f1 = 0.14, the variance of the white Gaussian noise
e(n) can be varied to evaluate the noise sensitivity of the
ScRe-Spect. The SNR is varied between 2 and 16 dB and
the number of simulations for each SNR is 200. The average
sample centres and 95% confidence intervals from the ScRe-
Spect with matching shape window for the two components
are shown in Fig. 5(a). Fig. 5(b) shows the average frequency
centres and the 95% confidence intervals. It can be seen
that the method becomes unreliable for the second Hermite
component around SNR 6 dB, while the localisation of the
Gaussian component remains good even for low SNR.
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Fig. 6. Detection and time-frequency localisation of individual components
in a dolphin echolocation signal; (a) The spectrogram with Gaussian window;
(b) The spectrogram with second Hermite window; (c) The ScRe-Spect with
Gaussian window; (d) The ScRe-Spect with second Hermite window.

IV. TRANSIENT ECHOLOCATION SIGNAL EXAMPLE

This section provides an example of a transient echolocation
signal from a beluga whale (Delphinapterus leucas). The
signal is sampled with 1 MHz and recorded by one of 47
simultaneously sampling hydrophones as described in [15].
The signal was chosen because it is recorded at the centre
of the echolocation beam, based on the peak amplitude level
the signal is sample by the hydrophone closest to the centre
beam axis of the animal. Fig. 6(a) shows the spectrogram
with a Gaussian window, Fig. 6(c) the ScRe-Spect with a
Gaussian window, Fig. 6(b) the spectrogram with a second
Hermite window and Fig. 6(d) the ScRe-Spect with a second
Hermite window. Fig. 6(c) shows two peaks, one clear at (307
µs, 65 kHz) and one with smaller amplitude at (338 µs, 53
kHz), these peaks corresponds well to the spectrogram in Fig.
6(a). In Fig. 6(d) the signal energy is more scattered even
if peaks appear, the peaks also do not correspond well to
the spectrogram in Fig. 6(b). This suggests that the signal
components in the dolphin echolocation signal more closely
resembles Gaussian functions than second Hermite functions.

With additional measurements, this method could determine
if the larger and smaller Gaussian like components originate
from two locations within the sound generation mechanism
of the dolphin or are the result of internal reflection of the
sound wave. Assuming an approximate sound velocity of
1490 m/s in the tissue, the time separation of the components
corresponds to a total difference in sound wave travel distance
of approximately 4.6 cm.

V. CONCLUSIONS

It is shown that perfect time-frequency localisation of a
Gaussian and second Hermite transient signal component can
be achieved by the ScRe-Spect using a matching shape time

window. If a time window which do not match the shape of
the signal component is used, the component energy is instead
scattered in ellipses around the time-frequency centre of the
component. It is shown that this can be used to find the time-
frequency centres and the shapes of the individual transient
signal components within a multi-component signal.

The results from simulated multi-component signals with
noise show that the ScRe-Spect can resolve and correctly
identify the time-frequency centres and component shapes
even if the signal components are close in time and frequency.
The ScRe-Spect is also robust to noise disturbances. The
performance is evaluated on a measured dolphin echolocation
signal, which gives good time-frequency localisation of what
seems to be two Gaussian-like signal components.

REFERENCES

[1] K. Kodera, C. de Villedary, and R. Gendrin, “A new method for the
numerical analysis of nonstationary signals,” Physics of the Earth &
Planetary Interiors, vol. 12, pp. 142–150, 1976.

[2] F. Auger and P. Flandrin, “Improving the readability of time-frequency
and time-scale representations by the reassignment method,” IEEE
Trans. on Signal Processing, vol. 43, pp. 1068–1089, May 1995.

[3] F. Auger, E. Chassande-Mottin, and P. Flandrin, “On phase-magnitude
relationships in the short-time Fourier transform,” IEEE Signal Process-
ing Letters, vol. 19, no. 5, pp. 267–270, May 2012.

[4] P. Flandrin, “A note on reassigned Gabor spectrograms of Hermite
functions,” J Fourier Analysis and Applications, vol. 19, no. 2, pp.
285–295, 2013, doi 10.1007/s00041-012-9253-2.

[5] A.I. Rasiah, R. Togneri, and Y. Attikiouzel, “Modeling 1-D signals using
Hermite basis functions,” in IEEE Proc.-Vis. Image Signal Process.
IEEE, 1997, vol. 144, pp. 345–354.

[6] T. H. Linh, S. Osowski, and M. Stodolski, “On-line heart beat
recognition using Hermite polynomials and neuro-fuzzy network,” IEEE
Trans. on Instrumentation and Measurement, vol. 52, no. 4, pp. 1224–
1231, August 2003.

[7] B.N. Li, M.C. Dong, and M.I. Vai, “Modeling cardiovascular physio-
logical signals using adaptive Hermite and wavelet basis functions,” IET
Signal Processing, vol. 4, no. 5, pp. 588–597, 2010.

[8] R. Ma, Z. Huang L. Shi, and Y. Zhou, “EMP signal reconstruction using
associated-Hermite orthogonal functions,” IEEE Trans. on Electromag-
netic Compatibility, vol. 64, no. 6, pp. 1383–1390, March 2016.

[9] F. Auger, E. Chassande-Mottin, and P. Flandrin, “Making reassign-
ment adjustable: The Levenberg-Marquardt approach,” in 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2012, pp. 3889–3892.

[10] M. Hansson-Sandsten and J. Brynolfsson, “The scaled reassigned spec-
trogram with perfect localization for estimation of Gaussian functions,”
IEEE Signal Processing Letters, vol. 22, no. 1, pp. 100–104, January
2015.

[11] C. Capus, Y. Pailhas, K. Brown, D.M. Lane, P. Moore, and D. Houser,
“Bio-inspired wideband sonar signals based on observations of the
bottlenose dolphin (Tursiops truncatus),” J. Acoust. Soc. Am., vol. 121,
no. 1, pp. 594–604, 2007.

[12] J. Starkhammar and M. Hansson-Sandsten, “Evaluation of seven time-
frequency representation algorithms applied to broadband echolocation
signals,” Advances in Acoustics and Vibration, vol. 2015, pp. 1–13,
2015.

[13] J. Starkhammar, I. Reinhold, P. Moore, D. Houser, and M. Sandsten,
“Intra-click time-frequency patterns across the echolocation beam of a
beluga whale,” The Journal of the Acoustical Society of America, vol.
140, no. 4, pp. 3239–3239, 2016.

[14] E. Chassande-Mottin, F. Auger, and P. Flandrin, “Reassignment,” in
Time-Frequency Analysis, F. Hlawatsch and F. Auger, Eds., chapter 9,
pp. 249–277. U.K.: ISTE, London, 2008.

[15] J. Starkhammar, M. Amundin, J. Nilsson, T. Jansson, S. Kuczaj,
M. Almqvist, and H.W. Persson, “47-channel burst-mode recording
hydrophone system enabling measurements of the dynamic echolocation
behavior of free-swimming dolphins,” J Acoust Soc Am., vol. 126, no.
3, pp. 959–962, 2009.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 941


