
A Distributed Learning Architecture for
Big Imaging Problems in Astrophysics

Athanasia Panousopoulou∗, Sammuel Farrens†, Yannis Mastorakis∗,
Jean-Luck Starck†, and Panagiotis Tsakailides∗‡

∗Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), Greece
†Laboratoire AIM, UMR CEA-CNRS-Paris 7, Irfu, Service d’Astrophysique, CEA Saclay, France

‡Department of Computer Science, University of Crete, Greece

Abstract—Future challenges in Big Imaging prob-
lems will require that traditional, “black-box” ma-
chine learning methods, be revisited from the per-
spective of ongoing efforts in distributed computing.
This paper proposes a distributed architecture for
astrophysical imagery, which exploits the Apache
Spark framework for the efficient parallelization of
the learning problem at hand. The use case is re-
lated to the challenging problem of deconvolving a
space variant point spread function from noisy galaxy
images. We conduct benchmark studies considering
relevant datasets and analyze the efficacy of the herein
developed parallelization approaches. The experimen-
tal results report 58% improvement in time response
terms against the conventional computing solutions,
while useful insights into the computational trade-offs
and the limitations of Spark are extracted.

I. INTRODUCTION

Recent advances in distributed computing are
causing a paradigm shift in the analysis of petas-
cale data [1], with the objective to enable the
accurate trends prediction, typically in the domain
of retail and social networking. Empowering dis-
tributed learning over large-scale scientific datasets,
is considered the next emerging challenge, e.g., [2];
Considering the astrophysics domain, the respective
instrumentation (e.g., Large Synoptic Survey Tele-
scope [3]) can generate on a daily basis comparable
magnitudes of data to the ones generated by popular
social media platforms. At the same time, analytics
over astrophysical datasets are performed at a sig-
nificantly larger amount of information than the one
considered in the social or Interner-based media [4].

Current bibliography trends thus highlight the
benefits of using Big Data technology in large-scale

astronomic imaging. Kira [5], is a representative
framework, which leverages on Apache Spark [6]
for speeding-up the source extraction process in
astronomical imaging. An alternative approach [7]
exploits the concept of Message Passing Interface
[8] for parallelizing the cross-match between refer-
ence and sample catalogs. Finally, the Corral frame-
work [9] proposes an Application Programming
Interface (API) that automates the transformation
of raw astronomical data into valuable information
over distributed computing platforms.

These representative approaches focus on essen-
tial low-level tools for extracting datasets before ap-
plying any learning or optimization algorithm. Nev-
ertheless, very little is reported on how learning al-
gorithms can be profiled for providing an alternative
computing solution that outperforms conventional
approaches in the astrophysics domain. In this work
we address this practical gap by proposing a Spark-
compliant distributed architecture for exploring how
the problem characteristics can be utilized for the
efficient parallelization of the learning algorithm.
We consider the emerging problem of removing
distortion from noisy galaxy images. Our bench-
mark studies highlight the efficacy of the herein
proposed concept versus the conventional, non-
parallel approaches with respect to time response,
while useful insights are extracted on the trade-off
between computational capacity and memory.

II. DISTRIBUTED LEARNING OVER IMAGING

A common concept in learning over imaging
data is that variant information from different ori-
gins is combined for removing noisy artifacts and

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1480

extracting essential information. Considering such
problems, one can think of heterogeneous imagery
that correspond to the same spatial information
(e.g., patches of noisy and reference images) to be
jointly processed for solving single/multi-objective
optimization problems. As such, a substantial vol-
ume of bundled imaging data should become readily
available in iterative processes for enabling large-
scale imaging analytics.

Fig. 1. The proposed distributed learning architecture.

The herein proposed architecture, presented in
Fig. 1 exploits this rationale for performing dis-
tributed learning over bundled data. Motivated by
the necessity of performing fast iterative computa-
tions, our architecture considers the Apache Spark
framework [6], which enables in-memory storage
of intermediate results. Specifically, it considers
a set of networked computing resources, that are
organized into a hierarchical cluster of computing
resources, comprised of a master and M workers.

The learning problem and the respective datasets,
are submitted to the master of the cluster through
the driver program. The initial imagery datasets
can be either locally available on the master or
stored in a Spark-compliant distributed file system.
The partitioning of the initial datasets relies on the
concept of the Resilient Distributed Dataset (RDD),
which is defined as a read-only collection of N
data records [10]. Through the driver the application
program can control several aspects of the dis-
tributed learning process, namely: (a) control how
each individual dataset will be modeled as a RDD;
(b) create RDD bundles through the RDD Data

Bundle Component; (c) define the transformations
and the respective actions on the bundled RDDs.

The resulting bundled partitions and the learning
tasks are parceled into the M workers. Each worker
is responsible for separating the combined inputs
(RDD Data Unbundle Component), which are pro-
vided as inputs to the learning tasks. In addition
to the application-defined tasks, image processing
libraries (e.g., Astropy [11], iSAP [12], SciKit-
Learn [13]) can be incorporated into each worker
for solving the learning problem at hand.

Each learning task is split into sequential com-
puting stages, performed on different data blocks by
different workers. The result of each stage returns
back to the driver program, which assigns another
stage of the same learning task, until all stages have
been completed. This process is repeated for all
learning tasks. The result can either be returned to
the driver or exported to the storage system.

III. USE CASE: POINT SPREAD FUNCTION

The removal of distortions introduced by the
Point Spread Function (PSF) is considered a funda-
mental challenge in astronomical image processing,
especially when the PSF varies across the sky as is
the case for the Euclid satellite [14].

An elegant method for dealing with a space
variant PSF is Object-Oriented Deconvolution [15].
This method assumes that the individual galaxy
images can be extracted and the PSF at each
position is known. This leads to an inverse prob-
lem of the form Y = H(X) + n, where Y =
[y0,y1, · · · ,yn] is a stack of observed noisy galaxy
images, X = [x0,x1, · · · ,xn] is a stack of the
true galaxy images, n = [n0,n1, · · · ,nn] is the
noise corresponding to each image and H(X) =
[H0x0,H1x1, · · · ,Hnxn] is an operator that rep-
resents the convolution of each galaxy image with
the corresponding PSF for its position.

A typical method for addressing this problem
considers a convex optimization approach for find-
ing the solution X̂ that gives the lowest possible
residual (Y−H(X̂)). Nevertheless, this problem is
ill-posed; the tiniest amount of noise will have a
large impact on the result of the operation. In order
to obtain a stable and unique solution, the problem

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1481

is regularized by adding prior knowledge that true
images are sparse in a given domain. This leads to
the following optimization problem:

C(X) = argmin
X

(
1

2
‖Y −H(X)‖22+

‖W(k) � Φ(X)‖1
)
,

(1)

s.t. X ≥0, where ‖•‖22 is the Frobenius norm. The Φ
operator realizes the isotropic undecimated wavelet
transform without the coarse scale [16], � is the
Hadamard (entry-wise) product, W(k) is a weight-
ing matrix, and k is a reweighting index1 [15].

Equation (1) is implemented via a primal-dual
splitting technique [17]. We herein propose Al-
gorithm 1 for distributing the optimization phase
across the proposed learning architecture. This ap-
proach entails the parallelization of Y, PSF data,
and X, into RDDY, RDDPSF , RDDX respec-
tively. We exploit primitive operations of the Spark
API (i.e., lambda anonymous functions, zip-
map-reduce operators) [18] for performing opera-
tions on the resulting RDDs. Specifically, the herein
proposed solution considers the map transformation
of RDDPSF to the corresponding weighting data
blocks RDDW on each worker.

All requested input is in turn compressed into the
RDD<Y,PSF,W,X> bundle, using the zip trans-
formation. The later is used to calculate the updated
value of the optimization variable X̂. The cluster
performs a combined map-reduce action, in order
calculate the value of the cost function C(X̂). This
process relies on the interaction between the driver
and the workers, and is repeated until either the
value of C(X̂) ≤ ε, or until the maximum number
of iterations imax is reached. The resulting stack of
galaxy images X̂ is directly saved on the disk of
the driver program.

IV. BENCHMARK STUDIES

The efficacy of Algorithm 1 is evaluated over
a dataset of 10,000 galaxy images convolved with
a space variant PSF with additive Gaussian noise.

1Matrix W(k) is related to the standard deviation of the noise
in the input images. The re-weighting index, k, is necessary to
compensate for the bias introduced by using the l1-norm.

Algorithm 1: The PSF algorithm parallelization
(driver , cluster).

Data: The data Y, the respective PSF, the maximum
number of iterations imax, and the cost tolerance ε.
Typically, imax =300, and ε =10−4.

Result: The estimated images X̂ that minimize Eq. (1).
1 Initialize i =0, the matrix X̂ & calculate H(X̂).
2 Parallelize Y, PSF, X̂ into RDDY , RDDPSF ,
RDDX̂, respectively, with N partitions per RDD.

3 Apply the weighting matrix calculator to RDDPSF :
RDDW = RDDPSF .map(lambda x : W(k)(x)).

4 Create the RDD bundle:
RDD<Y,PSF,W,X̂> = RDDY.zip(RDDPSF).

zip(RDDW).zip(RDDX̂).
5 while i ≤ imax do
6 Update X̂ in the bundle using [17]:

RDD<Y,PSF,W,X̂> =

RDD<Y,PSF,W,X̂>.map(lambda x : Update x).
7 Update C(X̂) (Eq.1):

C(X̂) = RDD<Y,PSF,W,X̂>.map(lambda x :

Calculate C(x)).reduce(lambda x, y : x+ y).
8 if C(X̂) ≤ ε then
9 break

end
10 i← i+1.

end
11 Save the data tuple to disk and return X̂ to driver.

The images were obtained from the GREAT3 chal-
lenge [19]. In total there are 600 unique PSFs [20],
which are down-sampled by a factor of 6 to avoid
aliasing issues when convolving with the galaxy
images [21].

The distributed learning architecture features
Spark 2.0.0, deployed over a cluster of M =6
workers. The driver allocates 6GB RAM, while
each worker allocates 2.8GB RAM and 4 CPU
cores. The resulting cluster has in total 24 CPU
cores and 16.8GB RAM.

Our studies emphasize on execution time and
disk usage with respect to N = {1, 32, 48, 64, 80,
128} partitions per RDD, where N =1 corresponds
to the standalone solution 2. Notably, considering
other parallel computing frameworks for compar-
ison (e.g., Hadoop [22], Kira[5]) is beyond the
scope of this work, as they are either unsuitable
for the essential iterative computations typically
met in learning imaging problems, or focus on the
extraction of astronomical imaging data.

2https://github.com/sfarrens/sf deconvolve

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1482

Fig. 2. The mean execution time per iteration of the optimization
loop for solving Eq. (1).

Execution Time. Figure 2 presents the mean exe-
cution time per iteration of the optimization process
for the calculation of C(X̂). The conventional ap-
proach (N =1) requires ∼ 200 secs per iteration,
opposed to the parallelized approach, for which
the execution time remains < 85 sec. Notably, as
the number of partitions increases the mean time
of execution additionally increases; as N 32→128,
the mean execution time 60.9 sec → 80.9 sec.
This is due to the fact that as N becomes larger
the number of learning tasks, and subsequently
the number of map-reduce networked interactions
between the workers and the driver also increases.
Even so, as the value of N increases the size of the
individual data blocks decreases, leading to reduced
load for each computing stage per task and worker.
Thus, for N 32 → 128 the cluster exhibits a more
stable behavior in terms of time response, and the
standard deviation of the execution time decreases
from 24.66 sec to 8.48 sec.

Disk Usage. For measuring the disk usage we
employed the Spark-automated log files that are
generated on each worker during the execution of
the application program. The disk usage for the
calculation of the intermediate results with respect
to the time elapsed per worker is presented in
Fig. 3. We observe that as the number of partitions
increases, the requirements in disk usage decrease;
when N 48→ 128 the disk usage after an hour
of execution drops from 9.3 GB to 6.6 GB. The
increased disk demands illustrate that the memory
allocated per worker is not sufficient for storage and

computations. In addition, these results highlight
that the scale of an input imaging dataset is relevant
to the RAM capacity of the cluster, and the demands
of the solving approach; while the initial dataset
herein considered belongs to the order of MB, it
unfolds to intermediate results that can rapidly reach
the order of GBs.

Fig. 3. The disk usage per worker during the C(X̂) calculation.

The results thus far highlight the trade off be-
tween CPU work load and memory usage. A small
number of partitions results in fewer data blocks
with relatively large size and increased demands in
memory, which in turn increases the disk demands.
On the other hand, as the number of partitions
increases, the size of the data blocks decreases, and
subsequently, the disk usage requirements become
more relaxed. However, more stages are needed
to complete an action, which implies more CPU
computations per worker and learning task.

Fig. 4. The convergence of C(X̂) w.r.t. the time elapsed.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1483

Convergence Behaviour. Figure 4 illustrates the
convergence behavior of the value of C(X̂) versus
the time elapsed when imax = 150, and either
the standalone or PSF parallelization (Algorithm 1)
approach is adopted. The distributed learning ap-
proach is 58.33% faster than the conventional one;
the completion time of the standalone approach
equals to ∼480 min, opposed to the parallelized
version, which does not exceed 190 min and 210
min for N =80 and N =128 respectively. These
results highlight the fact that despite the memory
and disk overhead for storing intermediate results
on each worker, the herein proposed solution is
extremely beneficial in terms of time response for
enabling large-scale imaging analytics.

V. CONCLUSIONS

In this paper we propose an Spark-based dis-
tributed learning architecture for bundled imaging
data and present the respective algorithm paral-
lelization for a high-impact use case from the
computational astrophysics domain. The benchmark
studies highlight the practical benefits of changing
the implementation exemplar and moving towards
distributed computational approaches. Considering
the lessons learned from this study, our next steps
are related to the extension of the proposed archi-
tecture towards the design of an API for emerging
astrophysical problems.

ACKNOWLEDGMENT

This work was funded by the DEDALE project
(no. 665044) within the H2020 Framework Program
of the European Commission.

REFERENCES

[1] H. Hu, Y. Wen, T. S. Chua, and X. Li, “Toward scalable
systems for big data analytics: A technology tutorial,” IEEE
Access, vol. 2, pp. 652–687, 2014.

[2] V. Marx, “Biology: The big challenges of big data,” Nature,
vol. 498, no. 7453, pp. 255–260, 2013.

[3] B. Jain, D. Spergel, R. Bean, A. Connolly,et al., “The
whole is greater than the sum of the parts: Optimizing
the joint science return from lsst, euclid and wfirst,” arXiv
preprint arXiv:1501.07897, 2015.

[4] P. Huijse, P. A. Estevez, P. Protopapas, J. C. Principe,
and P. Zegers, “Computational intelligence challenges
and applications on large-scale astronomical time series
databases,” IEEE Computational Intelligence Magazine,
vol. 9, no. 3, pp. 27–39, Aug 2014.

[5] Z. Zhang, K. Barbary, F. A. Nothaft, E. R. Sparks, et al.,
“Kira: Processing astronomy imagery using big data tech-
nology,” IEEE Transactions on Big Data, no. 99, 2016.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, ser. HotCloud’10. 2010, pp. 10–10.

[7] X. Jia and Q. Luo, “Multi-assignment single joins for par-
allel cross-match of astronomic catalogs on heterogeneous
clusters,” in Proceedings of the 28th International Confer-
ence on Scientific and Statistical Database Management,
ser. SSDBM ’16. 2016, pp. 12:1–12:12.

[8] D. B. Kirk and W. H. Wen-Mei, Programming massively
parallel processors: a hands-on approach. Morgan Kauf-
mann, 2016.

[9] J. B. Cabral, B. Snchez, M. Beroiz, M. Domnguez,
M. Lares, et al., “Corral framework: Trustworthy and
fully functional data intensive parallel astronomical
pipelines,arXiv preprint arXiv:1701.05566, 2017.

[10] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, et al.,
“Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the
9th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’12. 2012, pp. 2–2.

[11] T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droet-
tboom, E. Bray, et al., “Astropy: A community python
package for astronomy,” Astronomy & Astrophysics, vol.
558, p. A33, 2013.

[12] O. Fourt, J.-L. Starck, F. Sureau, J. Bobin, Y. Moudden,
et al., “isap: Interactive sparse astronomical data analysis
packages,” Astrophysics Source Code Library, 2013.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[14] R. Laureijs, J. Amiaux, S. Arduini, J. . Auguères, J. Brinch-
mann, et al., “Euclid Definition Study Report,” ArXiv e-
prints, Oct. 2011.

[15] S. Farrens, F.M. Ngole Mboula, and J.-L. Starck, “Space
variant deconvolution of galaxy survey images,” Astronomy
& Astrophysics, vol. 601, A66 , 2017.

[16] J.-L. Starck, F. Murtagh, and M. Bertero, “Starlet transform
in astronomical data processing.” in Handbook of Mathe-
matical Methods in Imaging, O. Scherzer, Ed. Springer,
2015, pp. 2053–2098.

[17] L. Condat, “A primal-dual splitting method for convex
optimization involving Lipschitzian, proximable and linear
composite terms,” Journal of Optimization Theory and
Applications, vol. 158, no. 2, pp. 460–479, 2013.

[18] https://spark.apache.org/releases/spark-release-2-0-0.html
[19] R. Mandelbaum, B. Rowe, J. Bosch et al., “The Third

Gravitational Lensing Accuracy Testing (GREAT3) Chal-
lenge Handbook,” ApJS, vol. 212, p. 5, May 2014.

[20] T. Kuntzer, M. Tewes, and F. Courbin, “Stellar classifi-
cation from single-band imaging using machine learning,”
Astronomy & Astrophysics, vol. 591, p. A54, Jun. 2016.

[21] M. Cropper, H. Hoekstra, T. Kitching, R. Massey, J. Ami-
aux, et al., “Defining a weak lensing experiment in space,”
MNRAS, vol. 431, pp. 3103–3126, Jun. 2013.

[22] T. White, Hadoop: The definitive guide. ” O’Reilly Media,
Inc.”, 2012.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1484

