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Abstract—It could be beneficial for users of hearing aids if
these were able to automatically adjust the processing according
to the speech intelligibility in the specific acoustic environment.
Most speech intelligibility metrics are intrusive, i.e., they require
a clean reference signal, which is rarely available in real-life
applications. This paper proposes a method, which allows using
an intrusive short-time objective intelligibility (STOI) metric
without requiring access to a clean signal. The clean speech
reference signal is replaced by the clean speech envelope spectrum
estimated from the noisy signal. The spectral envelope has been
shown to be an important cue for speech intelligibility and is used
as the reference signal inside STOI. The spectral envelopes are
estimated as a combination of predefined dictionaries, i.e., code-
books, that best fits the noisy speech signal. The simulations show
a high correlation between the proposed non-intrusive codebook-
based STOI (NIC-STOI) and the intrusive STOI indicating that
NIC-STOI is a suitable metric for automatic classification of
speech signals.

I. INTRODUCTION

Speech is a fundamental tool for human communication.

Understanding speech becomes a challenging task in adverse

listening conditions such as ”the cocktail party scenario”

especially for hearing impaired individuals [1], [2]. Speech

enhancement algorithms aim to improve speech intelligibility

for hearing aid users [3], [4], [5]. However, speech enhance-

ment algorithms may be beneficial in some acoustic scenarios

whereas the same algorithms can have a negative impact on

quality and intelligibility in other conditions [5], [6]. Thus,

it would be beneficial for HA users if speech enhancement

algorithms are automatically limited to scenarios in which they

provide an improvement in speech intelligibility [3], [4]. This

could be facilitated by an objective speech intelligibility metric

processed online in the HA.

Several methods can with an acceptable accuracy predict

the speech intelligibility intrusively, i.e., they require access

to a clean speech reference [4]. Some of the earliest intrusive

metrics that predict the intelligibility well for a limited type of

degradations, like linear filtering and additive noise, include

the articulation index (AI) [7] and the speech transmission

index (STI) [8]. Later, the short-time objective (STOI) metric

[9] and the speech-based envelope power spectrum model

(sEPSM) [10] were introduced for more complex distortion

types and are reported to have an useful reliability [4]. How-

ever, the need for a clean speech signal would be a limitation

for real-time prediction of speech intelligibility, since this is

rarely available. More recently, a number of non-intrusive

metrics not requiring access to a clean speech reference signal

have been introduced, e.g., the speech-to-reverberation mod-

ulation energy ratio (SRMR) [11], the modulation spectrum

area (ModA) [12]. These methods are, however, either limited

to assessment of reverberated speech or still inferior to the

intrusive metrics [4].

This paper proposes a non-intrusive intelligibility prediction

method referred to as the non-intrusive codebook-based STOI

(NIC-STOI). The method estimates the intelligibility of noisy

speech non-intrusively by comparing relevant features of the

clean speech with the features of the noisy speech inside

a well-established intrusive intelligibility framework, STOI,

similar to [13], [14]. The relevant features of the clean speech

are based on the spectral envelope of the speech, which has

been shown to be an important cue for speech intelligibility

[15]. The spectral envelopes of the clean speech and the noise

signal are estimated as the most suitable combination from a

predefined speech and noise spectra dictionary, a codebook,

which best fits the noisy speech signal using a codebook-

based approach [16], [17]. These codebooks consist of filter

coefficients that capture the overall structure of the spectral

envelope.

II. THE NIC-STOI MEASURE

NIC-STOI allows predicting the intelligibility from the

noisy signal only using an intrusive metric (STOI) without

requiring access to the clean speech signal. The approach

behind the method is to replace the clean reference signal

with an estimate of the clean speech features obtained from the

noisy signal. An estimate of the clean speech spectral envelope

is used as the relevant features of speech intelligibility in the

method. Then, NIC-STOI gives a non-intrusive intelligibility

prediction by comparing the correlation of the estimated clean

speech spectrum with the noisy spectrum with the intrusive

STOI measure. The framework of the measure is illustrated

by a block diagram in Fig. 1. The framework can be divided

into three main steps: (1) The parameters needed to obtain

the clean speech reference are estimated, (2) time-frequency-

spectra of the clean and noisy speech signals are composed

from the estimated parameters, and, (3) an intelligibility score

is predicted with the intrusive STOI framework.
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Fig. 1. Block diagram illustrating the proposed non-intrusive codebook-based STOI metric in which the relevant features of the clean and noisy speech signals
are composed as time-frequency power spectra using a codebook-based approach and utilized within the intrusive framework, STOI.

A. Signal model

The proposed method is based on an additive noise model

assuming the speech and noise are statistically uncorrelated

from [16], [17], i.e.,

y(n) = s(n) + w(n), (1)

where y(n), s(n) and w(n) represent the sampled noisy

speech, clean speech and noise, respectively. The clean speech

signal can be modeled as a stochastic autoregressive (AR)

process

s(n) =
P
∑

i=1

asi(n)s(n− i) + u(n) = as(n)
T s(n− 1) + u(n),

(2)

where s(n − 1) = [s(n − 1), . . . , s(n − P )]T with the P

past speech samples, as(n) = [as1(n), as2(n), . . . , asP (n)]
T

is a vector containing the speech linear prediction coefficients

(LPC), and u(n) is zero mean white Gaussian noise with

excitation variance σ2
u(n). Similarly, the noise signal can be

modeled as

w(n) =

Q
∑

i=1

awi
(n)w(n− i) + v(n) = aw(n)

T w(n− 1) + v(n),

(3)

where w(n − 1) = [w(n − 1), . . . , w(n − Q)]T with the Q

past noise samples, aw(n) = [aw1
(n), aw2

(n) . . . , awQ
(n)]T ,

and v(n) is zero mean white Gaussian noise with excitation

variance σ2
v(n).

The AR model is used to model the speech and noise signals

as well as training the codebook dictionaries.

B. Step 1: Estimate parameters

The spectra of the clean and noisy speech signals are

estimated from the LPC and the excitation variances con-

catenated in the vector θ = [as aw σ2
u(n) σ2

v(n)]. These

parameters are estimated using a priori information from a

trained codebook about the speech and noise spectral shapes

in the form of LPC based on the approach in [16], [18],

[17], where more details on the derivation of this method

can be found. Given the observed vector of noisy samples

y = [ y(0) y(1) . . . y(N − 1) ] for the current frame of

length N , the MMSE (minimum mean square error) estimate

of θ can be given as θ̂ = E(θ|y) for the support space of the

parameters to be estimated, Θ, and using Bayes’ theorem can

be reformulated as

θ̂ =

∫

Θ

θp(θ|y)dθ =

∫

Θ

θ
p(y|θ)p(θ)

p(y)
dθ. (4)

The vector, θij = [asi awj
σ2,ML
u,ij (n) σ2,ML

v,ij (n)], is then defined

for each ith entry of the speech codebook and jth entry of the

noise codebook, respectively. The maximum likelihood (ML)

estimates of the speech and noise excitation variances, σ2,ML
u,ij

and σ2,ML
v,ij , respectively, are then given by [18], [16]

C

[

σ2,ML
u,ij

σ2,ML
v,ij

]

= D, (5)

where

C =

[

‖ 1
P 2

y (ω)|Ai
s(ω)|4 ‖ ‖ 1

P 2
y (ω)|Ai

s(ω)|2|Aj
w(ω)|2

‖

‖ 1

P 2
y (ω)|Ai

s(ω)|2|Aj
w(ω)|2

‖ ‖ 1

P 2
y (ω)|Aj

w(ω)|4
‖

]

D =

[

‖ 1
P 2

y (ω)|Ai
s(ω)|2 ‖

‖ 1

P 2
y (ω)|Aj

w(ω)|2
‖

]

(6)

where Ai
s and Aj

w are the spectra of the ith and jth vector

from the speech codebook and noise codebook, respectively,

and with ‖f(ω)‖ =
∫

|f(ω)|dω. The spectral envelope of the

speech codebook, the noise codebook and the noisy signal

are given by 1
|Ai

s(ω)|2 , 1

|Aj
w(ω)|2

and Py(ω), respectively. In

practice, the MMSE estimate of θ in Eq. 4 is evaluated as a

weighted linear combination of θij by

θ̂ =
1

NsNw

Ns
∑

i=1

Nw
∑

j=1

θij
p(y|θij)p(σ

2,ML
u,ij )p(σ2,ML

v,ij )

p(y)
, (7)

where Ns and Nw are the the number of entries in the speech

and noise codebooks, respectively. The weight of the MMSE

estimate, p(y|θij), can be computed as

p(y|θij) = e−dIS(Py(ω),P̂ ij
y (ω)) (8)

P̂ ij
y (ω) =

σ2,ML
u,ij

|Ai
s(ω)|

2
+

σ2,ML
v,ij

|Aj
w(ω)|2

(9)

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 227



Clean spectrum

0.5 1 1.5 2 2.5 3

Time [s]

5000

4000

3000

2000

1000

0

F
re

q
u

e
n

c
y
 [

H
z
]

Noisy spectrum

0.5 1 1.5 2 2.5 3

Time [s]

5000

4000

3000

2000

1000

0

F
re

q
u

e
n

c
y
 [

H
z
]

Noise spectrum

0.5 1 1.5 2 2.5 3

Time [s]

5000

4000

3000

2000

1000

0

F
re

q
u

e
n

c
y
 [

H
z
]

Estimated clean spectrum

0.5 1 1.5 2 2.5 3

Time [s]

0

1000

2000

3000

4000

5000

F
re

q
u

e
n

c
y
 [

H
z
]

Estimated noisy spectrum

0.5 1 1.5 2 2.5 3

Time [s]

0

1000

2000

3000

4000

5000

F
re

q
u

e
n

c
y
 [

H
z
]

Estimated noise spectrum

0.5 1 1.5 2 2.5 3

Time [s]

0

1000

2000

3000

4000

5000

F
re

q
u

e
n

c
y
 [

H
z
]

Fig. 2. Spectrograms of the original clean speech signal, noisy speech signal at 0 dB SNR and noise signal are depicted in the top panel from left to right,
respectively, as well as their corresponding estimated power spectra from the codebook-based approach in the bottom panel.

p(y) =
1

NsNw

Ns
∑

i=1

Nw
∑

j=1

p(y|θij)p(σ
2
u,ij)p(σ

2
v,ij), (10)

where the Itakura-Saito distortion between the noisy spec-

trum and the modeled noisy spectrum is given by

dIS(Py(ω), P̂
ij
y (ω)) [19], [17]. The weighted summation of

the LPC should be performed in the line spectral frequency

domain in order to insure stable inverse filters [16], [17].

C. Step 2: TF composition

Time-frequency (TF) power spectrum of the estimated ref-

erence signal, Ŝ, are composed from the estimated AR filter

coefficients of the clean speech signal âs for each time frame:

Ŝ(ω) =
σ̂2
u

|Âs(ω)|2
, (11)

where Âs(ω) =
∑P

k=0 âske
−jωk. In the same manner, the

estimated noise AR filter coefficients, âw, are used to compose

a TF spectrum of the noise:

Ŵ (ω) =
σ̂2
v

|Âw(ω)|2
, (12)

where Âw(ω) =
∑Q

k=0 âwk
e−jωk. The LPC, i.e. âs and âw,

determine the shape of the envelope of the corresponding

signals Ŝ(ω) and Ŵ (ω), respectively. The excitation variances,

σ̂u and σ̂v , determine the overall signal magnitude. Finally, the

noisy spectrum is composed as the combined sum of the clean

and the noise power spectra:

Ŷ (ω) = Ŝ(ω) + Ŵ (ω). (13)

These time-frequency spectra replace the discrete Fourier

transform of the clean reference signal and the noisy signal in

the original STOI measure [9].

D. Step 3: Intelligibility Prediction

In the final step, the intelligibility prediction is carried out

in exactly the same manner as for the STOI measure [9]. The

power spectra of the noisy speech, Ŷ , are further clipped by

a normalisation procedure expressed in Eq. 14 in order to de-

emphasize the impact of region in which noise dominates the

spectrum:

Ŷ ′ = max(min(λ · Ŷ , (1 + 10−β/20) · Ŝ), (1− 10−β/20) · Ŝ),
(14)

where Ŝ is the power spectrum of the estimated reference

signal, λ =

√

∑

Ŝ2/
∑

Ŷ 2 is a scale factor for normalizing

the noisy TF bins and β = −15 dB is the lower signal-to-

distortion ratio. Given the local correlation coefficient, rf (t),
between Ŷ and Ŝ at frequency f and time t, the NIC-STOI

prediction is given by averaging across all bands and frames:

NIC-STOI =
1

TF

F
∑

f=1

T
∑

t=1

rf (t). (15)

III. SIMULATION METHODOLOGY

The proposed metric NIC-STOI is evaluated on speech

samples from of 5 male and 5 female speakers from the

EUROM 1 database of the English sentence corpus [20]. The

interfering additive noise signal is simulated in the range of

-30 to 30 dB SNR as multi-talker babble from the NOIZEUS

database [6]. The LPC and variances of both the speech and

noise signal are estimated from 25.6 ms frames with sampling

frequency 10 kHz. The speech and, thus, the STP parameters

are assumed to be stationary over these very short frames.

The AR model order P and Q of both the speech and noise,

respectively, is set to 14 according to literature [16], [18], [17].

The speech codebook is generated on a training sample of 15

minutes of speech from multiple speakers in the EUROM 1

database in order to assure a generic speech model using the
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Fig. 3. (a) Scatter plot of the non-intrusive codebook-based STOI (NIC-
STOI) metric versus the intrusive STOI metric and (b) STOI and NIC-STOI
as a function of SNR.

generalized Lloyd algorithm (GLA) [16], [21]. The speech

codebook training sample does not include speech samples

from the speakers used in the test set. The noise codebook is

trained on 2 minutes of babble talk. The sizes of the speech and

noise codebooks are Ns = 64 and Nw = 8, respectively. The

performance of the metric is evaluated using three performance

criteria common for assessment of objective intelligibility

metrics [4], [14]; Pearson’s correlation (ρ) which characterizes

the linear relationship, Spearman’s rank (ρspear) and Kendall’s

tau (τ ) which both quantify the ranking capability.

IV. RESULTS AND DISCUSSION

The spectra of an example speech signal in the test set

is shown in Fig. 2 for the original clean speech signal, the

noisy speech signal at 0 dB SNR and the noise signal in the

top panel from left to right, respectively. In the bottom panel

the corresponding estimated power spectra of relevant signal

features are composed using trained codebooks of speech and

noise spectral shapes parametrized as LPC to model the a

priori information in a Bayesian MMSE scheme.

It can be observed that the method only captures the overall

envelope structure and not the fine structure of speech, since it

is based on an AR model [19], [17]. Only modeling the overall

envelope structure is assumed to be sufficient for depicting

the essential features of clean speech, since the envelope

structure has long been identified as an important cue for

speech intelligibility used within other intrusive intelligibility

prediction frameworks, i.e., STI and EPSM [15], [8], [10].

This viewpoint can also be supported by extensive vocoder

TABLE I
PERFORMANCE OF THE PROPOSED METRIC IN TERMS OF PEARSON’S

CORRELATION (ρ), THE SPEARMAN RANK (ρSPEAR ) AND KENDALL’S TAU

(τ ) BETWEEN NIC-STOI AND STOI AS WELL AS THE LINEAR

REGRESSION LINE.

Metric ρ ρspear τ Regression line

NIC-STOI 0.972 0.961 0.8521 0.730 · STOI + 0.285

simulations, where it has been shown that envelope cues

from only four spectral bands are sufficient to yield a high

intelligibility of speech perception in quiet [15]. As such, it

seems to be a reasonable assumption that only depicting the

overall envelope structure can be a good predictor for speech

intelligibility.

The performance of the NIC-STOI metric is evaluated

in relation to the corresponding original STOI scores. In

Fig. 3a there is a clear monotonic correspondence between

the NIC-STOI score (blue solid line) and the intrusive STOI

measure (black dashed line), such that a higher NIC-STOI

score also corresponds to a higher STOI score. Furthermore,

a strong linear trend can be observed between the NIC-STOI

and STOI measures. This observation is also supported by

the performance criteria given in Table I, where Pearson’s

correlation and the Spearman Rank is close to one implying a

high correlation. This indicates that the proposed non-intrusive

version of STOI can offer a comparable performance to the

original intrusive STOI. In Fig. 3b the STOI measure (black

dashed line) and the NIC-STOI measure (blue solid line) are

depicted as function of SNR. There is a clear monotonic

correspondence between NIC-STOI and STOI, such that a

higher STOI measure results in a higher NIC-STOI score. Fur-

thermore, the NIC-STOI scores also increase with increasing

SNRs. The offset between the two graphs can be accounted

for by the linear trend described in Table I, which gives the

translation between NIC-STOI and STOI scores.

In future work, it would be interesting to investigate how the

method performs with different noise types and environments

as well as unseen noise conditions. Additionally, the objective

results could be tested against subjective listening experiments

for further validation in future work .

V. CONCLUSION

This paper proposes a method for objective prediction

of speech intelligibility. The proposed method, NIC-STOI,

allows using an intrusive intelligibility metric (STOI) without

requiring access to the clean speech signal. Hence, NIC-STOI

is essentially a non-intrusive metric. In principle, the method

predicts the speech intelligibility by replacing the clean ref-

erence signal with an estimate of its spectrum. The features

of the clean speech signal are estimated using a codebook-

based approach, where the spectral shape of the speech is

trained and parametrized using LPC. The proposed NIC-STOI

metric shows a high correlation with the intrusive original

STOI score and, hence, seems promising for predicting speech

intelligibility non-intrusively using an intrusive intelligibility

metric.
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