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Abstract—The Glottal Mixture Model (GLOMM) extracts
speaker-dependent voice source information from speech data. It
has previously been shown to provide speaker identification per-
formance on clean speech comparable to universal background
model (UBM), a state of the art method based on MFCC. And,
when combined with UBM, the error rate was reduced by a
factor of three, showing that the voice source information is
largely independent of the information contained in the MFCC,
yet holds as much speaker-related information. We now describe
how GLOMM can be adapted for telephone quality audio and
provide significant error reduction when combined with UBM
and I-vector approaches. We demonstrate a factor of two error
reduction on the NTIMIT data set with respect to the best
published results.

I. INTRODUCTION AND PREVIOUS WORK

Recent work in speaker identification relies on front-
end processing that extracts short-time spectral information,
usually using the MEL frequency cepstral coefficient (MFCC)
features [1]. MFCC is the most prevalent short-term spectral
feature despite the fact that it was developed for speaker-
independent speech recognition. It is logical, then, that much
speaker-related information is missing from MFCC. Attempts
to add voice source information back into speaker identifica-
tion systems to improve them have met limited success [1],
[2], [3], [4], probably due to the difficulty and reliability of
estimating the voice source waveform itself. We previously
introduced the GLOMM method [5], which was based on
detecting glottal events (glottal opening/closing) by detecting
times of high linear prediction error. Rather than attempt to re-
construct the glottal source waveform accurately by separately
modeling open and closed glottis regions [6], [7], GLOMM
simply models the data as a recurrent pulse shape (located at
the glottal event times) driving a (slowly) time-varying all-
pole filter. The filter (linear prediction coefficients) and the
recurrent pulse shape are estimated in alternation. In this paper,
we review GLOMM and describe the algorithm changes that
were required for the method to work on telephone audio.

II. REVIEW OF GLOMM

The most basic principle in voice source estimation is linear
prediction [3]. The linear predictive coding (LPC) coefficients
are readily estimated using classical methods. In addition to
providing a good approximation to the vocal tract filter (VTF),
the prediction error waveform is a first-order approximation to
the voice source waveform (VSW), which approximates the
derivative of the glottal flow [2]. Refer to Figure 1, which is a
block-diagram of GLOMM. Parameters are shown in slanted

paralellograms and processing is shown as boxes. There are
two sections, a frame-based section, and a time-series based
section. Any parameter or processing shown in the frame-based
part is repeated individually for each frame. Conversion from
frame-based to time-series is done using overlap-add.

We now describe the algorithm and note where it differs
from the original GLOMM algorithm for clean speech [5].
Refer to Figure 1. The input data is first segmented into
overlapped Hanning-weighted frames suitable for lossless re-
combination with overlap-add. We then obtain an initial esti-
mate of LPC coefficients in each frame using classical methods
(autocorrelation/Levinson [8]). Using these LPC coefficients,
the data in each frame is whitened in the frequency domain
by multiplying the DFT of the data by the DFT of the LPC
coefficients. Then, the negative frequency bins (those between
N/2 and N) are set to zero before the inverse DFT is computed.
This results in frames of complex (analytic) whitened time-
series and is represented as “Hilbert transform” in the block
diagram. The frames are then re-combined into a (complex)
time-series using overlap-add to obtain the complex analytic
linear prediction error time-series (LPETS), which brings us
into the time-series-based part of the block diagram. We then
take the absolute value of the complex LPETS, resulting in a
real positive-valued envelope. Potential glottal events are found
by peak-picking the LPETS envelope. Processing up to this
point is the same as GLOMM for clean speech (See Section
II.B of [5]).

Because glottal peaks in degraded audio are more difficult
to locate, we implemented peak tracking. The purpose of
peak tracking is to remove detections that are not consistent
with the measured autocorrelation function. This is a new
component of GLOMM and is explained in detail in Section
III-B. Next, we collect glottal windows by extracting a window
of LPETS centered at each glottal event (See Section III-C).
Unlike GLOMM for clean speech which classified speakers by
attempting to re-synthesize speech using the speaker’s glottal
parameters, the glottal windows themselves are the effective
output of GLOMM for degraded speech. They are used much
like MFCC features are used in speaker identification. But,
since in the first pass, the glottal windows are only based on
the initial LPC coefficients, which are biased, the GLOMM
algorithm must iterate a few times before the glottal windows
are suitable to be used for speaker identification. To account
for phase distortions in degraded audio, we added an additional
step of phase correction which is detailed in Section III-C.

The process of re-estimating the LPC coefficients begins
with distilling the glottal windows into a set of parameters that
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Fig. 1. GLOMM block diagram.

can be used to create a synthetic voice source waveform (See
Section III-D). In the next step, we form a synthetic voice
source by inserting a synthetic glottal pulse at the location of
each detected glottal event. The synthetic voice source time-
series is then segmented again into frames and then processed
by the vocal tract filter, which is the all-pole filter formed from
the LPC coefficients. The result is a synthetic approximation
to the input time-series. The updated LPC coefficients in each
frame are obtained by minimizing the modeling error between
the synthetic voice source time-series and the input data. The
steps of creating the synthetic voice source and optimizing the
LPC coefficients is explained in Section III-E. Once the new
LPC coefficients are obtained, the algorithm repeats with the
”Whiten” block. This is repeated three times.

III. GLOMM FOR DEGRADED AUDIO

A. Effects of degraded audio

In telephone and other voice communications channels, the
reliability of glottal pulse detection is reduced due to amplitide
distortion, phase reversals, and high-pass filtering (loss of ❢✵
pitch fundamental). Despite these effects, the pitch frequency
can still be be deduced from the spectral lines separated by
❢✵, and seen as peaks in the auto-correlation function (ACF)
separated by ✶❂❢✵. Therefore, the glottal pulses, although
weaker and not as sharp, are still present, and are repeating
at the ✶❂❢✵ period. Our approach is to detect peaks with a
lower threshold, and then reject those detections that are not
consistent with the ACF. This idea is implemented by glottal
peak tracking.

B. Glottal Peak Tracking by ACF validation

The purpose of peak tracking is to eliminate detections that
are inconsistent with the measured auto-correlation function
(ACF), using a method developed for the detection of repeating
clicks from marine mammals [9]. To demonstrate peak track-
ing, we used a recording of degraded audio from the RATS
corpus [10], “H” channel, which is a radio channel exhibiting
amplitude compression. Refer to Figure 2. In Figure 2-(1), we
see the LPETS envelope, with red circles drawn at the detected
peaks. Figure 2-(3) is the normalized ACF for three frames
spanning the illustrated time segment. A clear peak can be seen
at 6 ms and a weaker ACF peak at 3.5 ms due to the interaction
between the glottal closure and glottal opening. In Figure 2-(1),
there are a total of 12 detected “glottal” peaks. One of them
(number 10) is invalid. We have indicated with letter ”A” the
location of the “correct” peak, which is slightly after the invalid
detection, but is more consistent with the surrounding periods.
The valid detection was not detected by the peak-picking
allgorithm, so cannot be recovered, but the false detection can
be removed. In Figure 2-(2), there is an intensity plot of the
12✂12 ACF pairing matrix ❆✐�❥ ✁ r✭✜✐�❥✮❂r✭✄✮, where r✭✜✐�❥✮

is the ACF at the lag time equal to the time spacing between
the detections. It is used to approximate the probability that
detection “i” can be paired with detection ”j”. For example,
notice that a bright value is indicated for pairing detection 4
with detection 6. This value is determined by looking at the
difference in time between detections 4 and 6, then going to
the ACF plot and choosing that ACF value. The difference in
time between detections 4 and 6 is 6 ms, which corresponds
to an ACF value of 0.5. This is also true of detections 5 and
7, and detections 6 and 8, etc.

We use an optimal assignment algorithm to find the
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globally-best pairings. To do this, we define an assignment
“error” for pairing detections ✐ and ❥ [9], which is set to
❊�✁✂ ❂ ✄ ❧♦❣ ✭r✭✜�✁✂✮☎r✭✵✮✮ ❂ ✄ ❧♦❣✭❆�✁✂✮✿ The algorithm [9]
finds the unique set of pairings that globally minimize the
total error. In Figure 2-(4), we see the automatically-generated
pairings (dotted lines). Here you see one sequence created from
detections 1,3,5,7,9,11, and another from detections 4,6,8,12 -
one set is glottal openings, and the other is glottal closings.
Note that the invalid detection (number 10) has been skipped.
Instead, detections 8 and 12 have been connected because their
time separation coincides with an ACF lag of 12 ms, which
has a high ACF value. All detection that are not paired will
be dropped.

Fig. 2. Illustration of click tracking using a section of data from RATS “H”
channel. (1) LPETS envelope with detections, (2) normalized ACF values for
each detection pair, (3) normalized ACF, (4) LPETS envelope with associated
detection groups.

C. Glottal Window Collection and Phase Correction

Glottal windows are time windows of LPETS centered on
each detected glottal pulse. All glottal windows are vernier
time-corrected so that the waveform has an amplitude peak
precisely at the ◗ ✰ ✶-th sample, where ✷◗ ✰ ✶ is the total
window length (Section II.C of [5]).

For degraded audio, we added the step of phase correction.
To phase correct, we divided each complex glottal window
by its value at the ◗ ✰ ✶-th sample, so it will always have
precicely value 1 there, with imaginary part zero. In Figure
3, we show glottal windows from speaker “fadg0” (real part)
without phase correction. Each glottal pulse is shown as an
intensity-modulated column in the vertical direction. Note that
here the glottal window half-size is ◗ ❂ ✺✷ and the glottal
pulses all have a (amplitude) peak at sample 53. There appears
to be a wide variation in the glottal pulse shape. However, on
closer inspection, we see this is due to phase reversals that
are common in the older analog two-wire telephone circuits
used to create NTIMIT. For the clean TIMIT corpus, such
phase variations were not noticed. In Figure 4, we see the

corresponding phase-corrected glottal windows (real part). The
glottal windows look all of a sudden much more consistent.
And, when comparing with Figure 5, which is from speaker
“falk0”, we see that the two speakers have distinct character-
istics. It is logical, then, that the glottal windows themselves
can serve as a feature, similar to MFCC.
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Fig. 3. Glottal windows from speaker “fadg0” - no phase correction.
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Fig. 4. Glottal windows from speaker “fadg0” - with phase correction.
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Fig. 5. Glottal windows from speaker “falk0” - with phase correction.

D. Distilling Glottal Windows

By the word “distilling”, we mean the process of extracting
a set of parameters that describe the collected glottal windows.
In the original GLOMM algorithm, distilling included PCA
analysis and GMM clustering (See Section II.C of [5]). We
have since dropped the GMM clustering step in favor of just
doing PCA. Suppose there are ❑ detected glottal pulses. Let
❩ be the ✭✷◗ ✰ ✶✮ ✆ ❑ matrix of complex glottal windows
(real part of ❩ is shown in Figures 4 and 5). Let matrix ❯

be the ✭✷◗ ✰ ✶✮ ✆ Ps matrix formed from the largest Ps
singular vectors of ❩, where Ps ❂ ✷. Matrix ❯ constitutes
the “distilled” glottal parameters.

E. Synthetic Voice Source and LPC optimization

To create the synthetic voice source waveform (VSW), we
place a “synthetic” pulse at the time of each detected glottal
event, with amplitude consistent with the LPETS. There-
fore, the synthetic VSW approximates the LPETS using pre-
determined pulse shapes that are obtained from distilled glottal
windows. GLOMM for clean speech [5] constructed the VSW
from the cluster centers obtained from glottal pulse clustering.
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For degraded audio, we have removed glottal pulse clustering
and have replaced it with the simpler PCA. Let ③❦ be a time-
window from LPETS centered at detected glottal pulse � (i.e.
a single column of ❩). Then, s❦ ❂ ❯✭❯✵③❦✮ is ③❦ projected
onto ❯ and constitutes the “synthetic” replacement for ③❦.
The entire VSW time-series is constructed by the superposition
of s✶ ✿ ✿ ✿ s❑ , each time-shifted to the corresponding detection
time. The completed VSW is then segmented into frames.

In the final step, the LPC coefficients in each frame are
individually optimized so that the VSW passed through the
vocal tract filter matches the corresponding input data frame as
close as possible (model-based measure of fit). Further details
are given in Section II.E of [5].

F. Classifier Approach

The original GLOMM classification method is described
in Section II.G of [5] and used the model-based measure of fit
mentioned in the previous section as a classification statistic.
In GLOMM for degraded audio, we do not use the GLOMM
algorithm as a classifier. Rather, we use the extracted phase-
corrected glottal windows (real part) as features, much like
MFCC is used. We then apply can apply speaker/channel sep-
aration methods and dimension reduction methods including
UBM [11], JFA [12], and I-Vector [13].

IV. EXPERIMENTS

We conducted experiments using classifiers based on three
feature extraction methods: GLOMM, MFCC, and PITCH,
which are described in the next sections. We then combined
the outputs of the three classifiers linearly.

A. GLOMM feature extractor and classifier

The GLOMM algorithm is described in [5] and its modi-
fications for degraded audio are described above. We used the
following parameter settings (See [5] for variable definitions):

1) LPC model order P ❂ ✁✷.
2) FFT size (at 8 kHz sample rate) ◆❋❋❚ ❂ ✸✸✻✿

3) Glottal data window length = 13 milliseconds, which
for 8000 Hz sample rate results in a glottal window
half-size of ◗ ❂ ✺✷✿

4) Glottal window PCA dimension 2.
5) Null assignment cost for Jonker-Volgenant algorithm

♣ ❂ ✷✿✹ (See eq. (1) and Section III.B in [9]).

To classify using the GLOMM features, we trained a 28-
component UBM on the glottal window data from all speakers
(training files). We then enrolled the UBM using data from
each speaker.

B. MFCC classifier

We extracted 19-dimensional MFCC with the HTK toolkit
[14] using a 25 millisecond window with 10 millisecond
frame rate. The HTK configuration parameters are TARGE-
TRATE = 100000, WINDOWSIZE = 250000, PREEMCOEF
= 0.96, CEPLIFTER = 22, NUMCHANS = 20, NUMCEPS =
19, DELTAWINDOW = 3, ENORMALISE = F, SOURCER-
ATE=1250, SAVECOMPRESSED = T, SAVEWITHCRC =
F, USEHAMMING = T, LOFREQ = 300, HIFREQ = 3400,

TARGETKIND = MFCC . Using these MFCC features, we
tried three MFCC classifiers: UBM [11], JFA [12], and I-
Vector [13]. The parameters of the classifiers were individ-
ually optimized. The UBM classifier used a ✁✾✷-component
mixture. The JFA had an eigenvoice dimension of 75 and an
eigenchannel dimension of 14. The I-vector classifier used an
I-vector dimension of 225, with a 68-dimensional LDA space.

C. PITCH classifier

To estimate pitch, we divided the data into overlapped
Hanning-weighted frames, then extracted pitch information
from each frame by peak-picking the autocorrelation function
(ACF) for the highest peak in the range of human pitch. From
each frame, we measured pitch period ✜ and amplitude ❛ ❂

r✂✄r☎, which was less than 1. To train on a given speaker, we
fit a 1-dimensional Gaussian mixture (essentially a smoothed
histogram) to the values ✜ , using ❛ as a sample weight. Since
each speaker presumably had a different distribution of pitch
estimates, we were not concerned with errors associated with
choosing the ACF peak at ✷❢☎ or ❢☎✄✷. To classify using pitch,
we evaluated the GMM on the pitch data extracted from the
training utterance, adding up the log-likelhood weighted by the
sample weights ❛.

D. Combined Classifier

We combined the classifiers using ▲ ❂ ▲▼✆❈❈ ✰

☞✶▲●✝❖▼▼ ✰ ☞✞▲✟■✠❈❍❀ and measured classification error
as a function of ☞✶ and ☞✞.

E. NTIMIT Data

The NTIMIT speech recognition corpus is a re-processing
of the TIMIT corpus through telephone circuits. It consists
of 630 male and female speakers, each having 10 utterances,
averaging about 3 seconds each, and divided into eight “SX”
and “SI” utterances and two “SA” utterances. In the speaker
identification experiments, we trained on all eight “SX” and
“SI” utterances and tested on the “SA” utterances. We used no
voice activity detection, always using the complete utterances.
All data was down-sampled to 8 kHz, since in NTIMIT there
is no activity above 4 kHz.

We conducted a 10-speaker and a 630-speaker experiment.
In the 10-speaker experiment, we used 500 independent trials.
In each trial, we chose 10 speakers at random from the 630
available. Then we formed a ✁✡☛✁✡ classification experiment,
testing each of the 2 test utterances from each speaker. There
were therefore 20 individual classification decisions per trial,
or 10,000 individual classification decisions total. In the 630-
speaker experiment, there was one trial with 2 test utterances
per speaker, so a total of ✷ ☛ ✻✸✡ ❂ ✁✷✻✡ decisions.

F. Results

For 10-speakers, the individual classifiers attained the fol-
lowing classification error in percent): MFCC/UBM 5.73%,
MFCC/JFA 5.36%, MFCC/I-vector 4.81%, PITCH 30.82%,
GLOMM/UBM 16.51%. The combined classifier (MFCC/I-
vector + PITCH + GLOMM) attained 2.2% (See Figure 6,
left). Just MFCC/I-vector + PITCH got 2.97%, and MFCC/I-
vector + GLOMM attained 2.61%. For 630 speakers, the
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Fig. 6. Combination results GLOMM + PITCH + UBM. Left: Ten speakers.
Right: 630 speakers.

combined classifier (MFCC/I-vector + PITCH + GLOMM)
attained 27.85% error (See Figure 6, right). Just MFCC/I-
vector + PITCH got 33.9%, and MFCC/I-vector + GLOMM
attained 30.4%. We compare these results with existing results
available in the literature [15], [16], [17], [18] in Figure 7.
We can conclude that the MFCC-only results are comparable
with the existing results, both at 10 and 630 speakers. The
combined classifiers greatly out-perform the published results.

Fig. 7. Speaker identification results on NTIMIT: Comparison with published
results

V. CONCLUSIONS

In this paper, we have made GLOMM robust against
distortions present in telephone quality audio using glottal

window phase correction and glottal pulse tracking. In doing
so, we simplified the GLOMM classifier, using the extracted
glottal windows much like MFCC features. We have shown
that a hybrid classifier that linearly combines classifiers based
on GLOMM, PITCH, and MFCC features attains 2.2% error
for a 10-speaker population, at least a factor of two better
than the best previously-published results. At 630 speakers, it
attained 27.85% error, bettering the performance of 39% error
reported by Reynolds.
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