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Abstract—In a randomized DDoS attack with increasing emulation
dictionary, the bots try to hide their malicious activity by disguising
their traffic patterns as “normal” traffic patterns. In this work,
we extend the DDoS class introduced in [1], [2] to the case of a
multi-clustered botnet, whose main feature is that the emulation
dictionary is split over the botnet, giving rise to multiple botnet
clusters. We propose two strategies to identify the botnet in such
challenging scenario, one based on cluster expurgation, the other
one on a union rule. Consistency of both algorithms under ideal
conditions is ascertained, while their performance is examined over
real network traces.

Index Terms—Distributed Denial-of-Service, DDoS, Cyber-
Security, Signal Processing for Network Security.

I. INTRODUCTION AND MOTIVATION

More and more often, Distributed Denial-of-Service (DDoS)

attacks hit the headlines for their dangerous impact on several

real-world affairs. A DoS attack is realized through a bulky

volume of requests sent to a target destination site, which is

overwhelmed until its resources saturate, and the service to

legitimate users is denied. The qualification of being “distributed”

comes from the fact that such requests are sent by a net of

dispersed machines (the bots), which can be malicious users

acting consciously, or legitimate users that have been infected,

e.g., by worms and/or Trojans. The bots can be coordinated by

one or more botmasters, and the ensemble of bots is globally

referred to as the botnet. The goal of the defender is identifying

the members of the botnet, in order to ban the bots, without

denying the service to normal users.

The simplest, centralized DoS attacks (e.g., TCP SYN flooding)

exploited vulnerabilities in the protocol stack, relying essentially

on repeated, high-rate transmissions of the same request from

a single user. In such circumstances, the anomalous transmission

rate was sufficient to identify the source of the attack. In contrast,

in a DDoS attack the individual bot’s rate is kept moderate, while

the global attacking rate must be large. Nevertheless, without

further sophistication, the compromised machines can be still

identified at a single-user level. In fact, traffic patterns of normal

users are usually characterized by a certain degree of innovation

(for instance, as time elapses, distinct web-pages are likely to

be visited), while the repetition scheme implicitly shows the

anomalous bot character.

This work focuses on a more challenging variant of DDoS

attack, namely, on the recent class of application-layer DDoS

attacks. This peculiar form of attacks goes beyond the sim-

plest repetition-based attacks, by exploiting the ample range of

possibilities available at the application layer [3], [4]. In such

novel attacks, the bots choose randomly their requests from a set

of admissible messages (an emulation dictionary), trying so to

disguise their traffic patterns as normal ones. The enhanced degree

of variability in the message selection (e.g., the relatively large

number of pages accessible in surfing through a website), makes

the individual bot’s patterns so reach to prevent from single-user

inspection. As far as we know, the first formal characterization of

the aforementioned class of randomized DDoS attacks has been

provided in [1], [2], for the case where the botnet is composed

by a single cluster using one and the same emulation dictionary.

In many practical situations, however, it is expected that the

emulation dictionary is disseminated through the botnet, in such

a way that distinct groups of bots have access to different

portions of the overall emulation dictionary. This could happen

for different reasons. One case is that, due to various constraints

(e.g., bandwidth, energy), the botmaster sends to the bots only

portions of the learned dictionary. Another case is a genuinely

decentralized DDoS, where the botnet is clusterized in separate

groups (perhaps coordinated by different botmasters, giving rise

to a hierarchical DDoS) acting independently, and, in particular,

performing the dictionary learning task separately.

A. Related Work

With no pretence of exhaustiveness, we now describe shortly

some recent inferential strategies for DDoS identification. We

redirect the Reader to [5] for a more comprehensive summary.

Statistical methods for DDoS attack identification are proposed

in [6], with focus on the detection of anomalies in the char-

acteristics (e.g., entropy, relative frequencies) of selected packet

attributes. In [7] a hierarchical method is presented, where shifts

in spatial/temporal traffic patterns are exploited by the detection

system to see where and when a flooding attack occurs. A method

to detect low-rate DDoS attacks is proposed in [8], relying on the

generalized entropy and on the information distance. In [9], shrew

DDoS attacks (where flows are constrained to a small fraction of

their rate) are examined, and the relationships between attack

patterns and network environment are obtained by capturing

the adjustment behaviors of the TCP congestion window at

the target’s side. Unfortunately, the aforementioned strategies

are not suited to face the novel class of randomized DDoS

attacks. To overcome this issue, in [1], [2] a botnet identification

algorithm is proposed, which lies somehow between the two

extremes of fully-parametric [10]–[12], and fully-data-driven [13]

approaches. Following emerging trends in signal processing for

network cyber-security [14]–[17], in [1], [2] consistent botnet

identification is achieved through descriptive indicators (i.e., the

message innovation rate and the emulation dictionary rate) that

arise from a minimal set of physical assumptions.

However, the algorithms proposed in [1], [2] cannot deal with

more general forms of attacks, such as the multi-clustered attack

object of this work, whose goal is accordingly filling this gap. We

propose two novel algorithms aimed at revealing the presence of

multiple botnet clusters hidden in the network, and prove that

such algorithms enable consistent botnet identification.
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II. THE MULTI-CLUSTERED DDOS ATTACK

Let NS(t) denote the overall number of transmissions occurred,

up to time t, in a given subnet S. The transmission activity of S

is quantified in terms of the empirical transmission rate:

λ̂S(t) ,
NS(t)

t
(1)

When a limiting (as t → ∞) rate exists, it is denoted by λS.

A second indicator relates instead to the message content. In

order to characterize the variability in the activity of network

users, we focus on the new messages that these latter produce

as time elapses. Such variability can be quantified in terms of

a Message Innovation Rate (MIR), which has been originally

introduced in [1]. Let us collect into an empirical dictionary,

DS(t), all the distinct messages sent, up to time t, by the

users belonging to a given subnet S. The empirical MIR can be

accordingly defined as:

ρ̂S(t) ,
|DS(t)|

t
(2)

The limiting MIR, when it exists, is denoted by ρS.

Our model for multi-clustered DDoS is inspired to recent kinds

of application-layer DDoS [3], [4], and is a generalization of

the DDoS class originally proposed in [1]. We assume that the

botnet is made of C non-overlapping clusters, each of which has

access to an emulation dictionary (at time t) denoted by Ec(t), for

c = 1, 2, . . . , C. A bot of the c-th cluster performs normal traffic

emulation by picking admissible messages from Ec(t). In order

to guarantee a non-suspicious innovation rate, the dictionary is

learned in a continuous fashion, namely, its cardinality increases

with t. To quantify richness of the emulation dictionary, we

introduce the Emulation Dictionary Rate (EDR) if the c-th cluster:

αc , lim
t→∞

|Ec(t)|

t
(3)

When a bot of the c-th cluster transmits, it picks (uniformly at

random) a message from the available emulation dictionary Ec(t).
As a result of the transmission activity, to any subnet B of the

botnet we can associate a certain empirical dictionary, DB(t).
At time t+ s, such an empirical dictionary is possibly increased

by embodying the distinct messages (which were not initially

contained in DB(t)) picked during interval s by the bots in B.

A. Botnet MIR

The implications regarding the aforementioned network indi-

cators have been examined in detail in [1], [2]. For the sake of

completeness, the pertinent results are collected in the forthcom-

ing theorem, which basically rephrases Theorem 1 in [1], [2] to

handle the multi-clustered setting.

THEOREM 1 (MIR of a multi-clustered botnet). Let Btot be a

multi-clustered botnet, and let the transmission policies be either

synchronous with constant transmission rate, or independent

Poisson processes, with rates λu, for u ∈ Btot. Let B =
⋃C

c=1 Bc,

where Bc is a subnet of the c-th botnet cluster, and let αc the

EDR of the c-th cluster. If Bc 6= ∅, the (limiting) MIR of Bc is:

ρBc
=

αc λBc

αc + λBc

(4)

where λBc
=

∑
u∈Bc

λu is the aggregate transmission rate of

Bc. Moreover, the overall MIR of B fulfills the inequality:

ρB ≤
∑

c:Bc 6=∅

αc λBc

αc + λBc

(5)

which is satisfied with equality when the emulation dictionaries

of the different clusters are mutually disjoint. �

As regards the individual-cluster MIR in (4), the result comes

directly from Theorem 1 in [1], [2]. As regards the overall MIR

in (5), the result comes from the fact that the MIR is sub-additive,

while the equality follows because disjointeness of the emulation

dictionaries implies disjointness of the corresponding empirical

dictionaries and, hence, additivity of the corresponding MIRs.

III. BOTNET IDENTIFICATION ALGORITHMS

The possibility of a successful botnet identification relies on

the fact that bots and normal users are expected to behave quite

differently as regards their degree of innovation. In fact, the

members of a botnet cluster produce their transmission activity by

picking messages from one and the same emulation dictionary.

The implied commonalities between two members of the same

botnet cluster are expected to emerge in terms of a MIR that is

lower than the MIR that would be obtained, e.g., if the two users

were normal. This is because the mutual independence of the ac-

tivities of two normal users, or of a normal user and a bot, implies

typically a low degree of correlation (some partial overlap could

arise due to, e.g., common interests, popular web-pages, peculiar

website structure), which is reflected in a small intersection be-

tween the corresponding (individual) empirical dictionaries. Such

heuristic argument has been made precise in [1], [2]. Specifically,

given two disjoint subnets, S1 and S2, two MIRs are introduced,

namely, the sum of MIRs: ρ̂sum(S1, S2) , ρ̂S1
+ ρ̂S2

, and the

MIR of a reference botnet: ρ̂bot(S1, S2) ,
α̂′(S1,S2)(λ̂S1

+λ̂S2
)

α̂′(S1,S2)+λ̂S1
+λ̂S2

,

with explicit dependence upon t being suppressed for ease of

notation. The value α̂′(S1, S2) in the latter formula is a reference

EDR estimated from the data. The detailed procedure to compute

it is available in [2], and is not reported here for space constraints.

Then, for ǫ ∈ (0, 1), an intermediate threshold is defined as:

γ(S1, S2) = ρ̂bot(S1, S2) + ǫ [ρ̂sum(S1, S2) − ρ̂bot(S1, S2)]. The

heuristic reasoning about identifiability translates into the fol-

lowing conditions. When the two subnets belong to the same

botnet cluster (below referred to as “joint case”), the empirical

MIR, ρ̂S1∪S2
, converges toward ρ̂bot as time elapses, as predicted

by Theorem 1. Next, consider the case that one subnet contains

normal users and/or bots belonging to clusters not contained in the

other subnet. In such case (below referred to as “nearly-disjoint

case”) it is realistic to assume that the degree of dependence

between the two subnets is lower than the degree of dependence

observed when both subnets belong to the same botnet cluster.

The above arguments lead to:

Joint case ⇒ ρ̂S1∪S2
< γ(S1, S1), (6)

Nearly-Disjoint case ⇒ ρ̂S1∪S2
≥ γ(S1, S1). (7)

Actually, when (7) is exactly verified (the verification of (6) being

guaranteed, for t large enough, by Theorem 1), we shall say that

the Botnet Identification Condition (BIC) is fulfilled.

Building upon the recipe summarized by (6) and (7), in [1],

[2] an algorithm is proposed (named BotBuster), which exhibits
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Algorithm: B̂=BotClusterBuster(traffic patterns, ǫ, κ, ξ)

N = {1, 2, . . . , N}; B̂ = ∅
for i ∈ N do

B̂i = {i}
for j ∈ N \ {i} do

if ρ̂(B̂i ∪ {j}) < γ(B̂i, {j}) then B̂i = B̂i

⋃
{j}

end

if |B̂i| = 1 then B̂i = ∅

if λ̂
B̂i

≤
κ

1 + κ
ξ λ̂N then B̂i = ∅ (cluster expurgation)

end

B̂ =

N⋃

i=1

B̂i

the following basic features for the case that a single botnet (i.e.,

C = 1) is hidden in the network: i) under the BIC, the true

botnet is estimated consistently; ii) the algorithm has complexity

O(N2), and is further open to parallelization.

However, there is an issue that forbids successful applicability

of the BotBuster algorithm to the multi-clustered case addressed

in this work. Such issue relates to the fact that (as experimental

verification reveals) the BIC is not always verified in practice.

As a result, during its flow, the algorithm occasionally produces,

along with the (nearly-)right botnet, spurious groups of users that

are not the right botnet. In the single-cluster case, such pathology

is remediated by choosing, at the end of the procedure that scans

all the nodes as pivots, the estimated botnet with the highest

cardinality [1], [2]. Such choice is based on the observation that

the cardinality of groups erroneously marked as botnet is typically

much smaller than the cardinality of a real botnet.

In the multi-clustered case, opting for the same maximum-

cardinality rule is clearly detrimental, since it would select only

the largest botnet cluster, which might be a largely insufficient

measure of protection to face the DDoS attack. Therefore, differ-

ent strategies are necessary. In the forthcoming sections we design

two strategies suited to face a multi-clustered DDoS attack.

A. Main Routine for Multi-Clustered Botnet Identification

We start by examining the algorithm BotClusterBuster, whose

pseudo-code is reported at the top of this page. We consider

the operation of the algorithm at a given time epoch. For the

sake of simplicity, dependence upon time is suppressed. Initially,

the algorithm selects the first user as pivot (this operation will

be repeated for all N nodes). User 1 is initially declared as a

bot (B̂1 = {1}). Then, by means of (6) and (7), it is declared

whether users 1 and 2 form a botnet. If so, B̂1 = {1, 2}, otherwise

B̂1 = {1}. Then, it is declared whether the currently estimated

botnet B̂1 forms a botnet with user 3, and so on. At the end

of this loop, a candidate botnet cluster B̂1 is obtained (if the

candidate cluster has cardinality equal to one, it is automatically

discarded). After iterating such inner loop over the entire set

of pivots, the algorithm ends up with a sequence of candidate

clusters, namely, B̂1, B̂2, . . . , B̂N . We remark that, differently

from the BotBuster algorithm of [1], [2], all the candidate botnet

clusters produced in the intermediate algorithm steps should be

retained, in order to take into account the possible presence of

multiple botnet clusters. The situation is pictorially illustrated in

Fig. 1, where we display the candidate botnet clusters estimated

by the algorithm at a certain time, with reference to a network
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Fig. 1. Candidate botnet clusters: screenshot of the algorithm’s output.

composed by 100 normal users and 100 bots, with 4 true botnet

clusters, with sizes 10, 20, 30, 40. The i-th “row” of the image

represents the output of the algorithm when user i is chosen as a

pivot. A white pixel means “estimated bot presence”, a black pixel

means “estimated bot absence”. Accordingly, if the (i, j)-th pixel

is white, the algorithm is estimating that user j is a bot when user

i is chosen as pivot. From Fig. 1, we can appreciate the emergence

of 4 clusters, corresponding to the true botnet clusters (bots are

ordered so as to appear well-clusterized in the image, a choice

made only for clarity, since the algorithm is clearly invariant to

permutations). On the other hand, we also see that a couple of

small spurious clusters is wrongly identified by the algorithm.

Now, were the BIC verified, all checks performed by the

algorithm would give the right answer (with probability tending

to 1 as t → ∞), and the sequence of candidate clusters would

contain exclusively (repetitions of) the true botnet clusters. There-

fore, a sufficient criterion to produce the global botnet estimates

would consist of applying the union operator: B̂ =
⋃N

i=1 B̂i. The

corresponding algorithm will be referred to as UnionBotBuster.

The pseudo-code for UnionBotBuster can be retrieved from the

pseudo-code of BotClusterBuster, by simply skipping the instruc-

tion referred to cluster expurgation. However, since in practice the

BIC is only approximately verified, the union rule would favor

inclusion of spurious clusters. Therefore, some refined criterion

to select the best clusters is desirable.

B. Cluster Expurgation

The DDoS power can be measured in terms of the global botnet

transmission rate, λB. For a DDoS attack to be effective, we

expect that, for κ ≥ 1: λB = κλN\B, with λN\B being the

global transmission rate of normal users. We stress that the lower

bound κ = 1 corresponds to the optimistic (at the botnet’s side)

assumption that a low DDoS rate is sufficient to impair the target

site. In terms of the overall network transmission rate, we get:

λB = κ
1+κ

λN. It is reasonable to assume that a true botnet cluster

concurs to the attack with a significant fraction of the attacking

rate, which leads to the following botnet membership condition:

for i = 1, 2, . . . , N , and for ξ ∈ (0, 1), the candidate cluster i is

retained if:

λ̂
B̂i

>
κ

1 + κ
ξ λ̂N , τ, (8)

and is discarded otherwise. The final estimate is then produced

by applying the union operator to the survived clusters, namely,

B̂ =
⋃

i:λ̂
B̂i

>τ
B̂i. Let us now introduce two performance indices:
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for a network N = {1, 2, . . . , N}, containing a botnet B (B̂(t) is

the final botnet estimated at time t):

ηbot(t) =
E[|B̂(t) ∩B|]

|B|
, ηnor(t) =

E[|B̂(t) ∩ (N \B)|]

|N \B|
, (9)

which are the expected fraction of correctly identified bots and the

expected fraction of normal users declared as bots, respectively.

We shall say that an identification algorithm is consistent if:

lim
t→∞

ηbot(t) = 1, lim
t→∞

ηnor(t) = 0 (10)

THEOREM 2 (Consistency of the algorithms BotClusterBuster

and UnionBotBuster). Let N = {1, 2, . . . , N} be a network

containing a multi-clustered botnet B, with asymptotically disjoint

emulation dictionaries. The bots’ transmission policies are either

synchronous with constant transmission rate, or independent

Poisson processes. The normal users’ transmission policies are

arbitrary. If the BIC in (7) holds, then the algorithm UnionBot-

Buster is consistent. Moreover, let λmin be the smallest (limiting)

transmission rate of a botnet cluster. If:

λmin >
κ

1 + κ
ξλN, (11)

then the algorithm BotClusterBuster is consistent. �

Consistency of UnionBotBuster holds because: i) by Theo-

rem 1, as t → ∞, a candidate cluster obtained starting with a bot

pivot converges to the true botnet cluster containing the pivot;

ii) since the BIC is assumed to be perfectly verified, a candidate

cluster obtained starting with a normal-user pivot converges to the

empty set. As regards BotClusterBuster, convergence of ηnor(t)
to zero is still implied by ii). On the other hand, successful

inclusion of all candidate clusters coming from a bot pivot

requires that the botnet-membership condition in (8) is verified

for all clusters, at least for t large enough. This amounts to

assume that, for the least favorable case (i.e., the cluster with the

lowest transmission activity) the threshold is crossed. Since such

condition is required asymptotically, the empirical values of the

transmission rates in (8), are replaced, in (11), by their limiting

counterparts. We remark that the theorem focuses on the case of

(at least asymptotically) disjoint emulation dictionaries. Another

relevant case could be that of partially overlapped emulation

dictionaries, which is left for future work.

IV. EXPERIMENTAL RESULTS

An e-commerce portal has been selected as target destination of

the attack. We employed a standard software for packet capturing,

and performed a preliminary filtering: i) only the application-

layer traffic directed to the target destination is retained; ii) the

survived packets are divided on the basis of source IP address,

before being fed to the identification algorithm. Following the

above recipe, we collected more than 20 minutes of traffic, from

10 users (students/researchers in our laboratory). The obtained

traffic streams have been then partitioned into 1-minute chunks.

Then, each distinct chunk is treated as representative of a distinct

user, for a total number of equivalent normal users ≈ 200. In

order to check that the activity of the users is enough sustained, as

well as compatible with typical traffic rates, we have performed

a careful trace-by-trace inspection, and we have computed the

average number of per-user TCP flows (2680), and the average

packet size (776 bytes). As regards the multi-clustered DDoS

attack, we need an emulation dictionary. To do so, we have first
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Fig. 2. Expected fraction of banned users (estimated over 100 Monte Carlo runs)
as a function of time, for different types of attack and identification algorithm, as
detailed in the legend. The network is made of 100 normal users and 100 bots.

taken all the distinct messages present in the overall dataset. Then,

we have split such ensemble into C disjoint sets, with C being

the number of clusters. Finally, at epoch t, the c-th emulation

dictionary Ec(t) is constituted by the first ⌊e0 + αct⌋ messages

of such ensemble (e0 is the initial dictionary size, set to 100
messages in the simulations).

In a first set of experiments, the individual bot transmission

rate has been chosen as twice the average rate of normal users,

and the EDR has been chosen as compatible with the innovation

rates estimated over the normal users’ traces. Such choices are

made to let the bots well concealed in the midst of legitimate

users. We considered an equal number (100) of normal users

and bots, which is again a favorable choice for the attacker.

With reference to such setting, we first launched a single-cluster

DDoS. The botnet identification algorithms for this case are:

the BotBuster algorithm introduced in [1], [2] (which selects

the maximum-cardinality cluster only), and the UnionBotBuster

algorithm. Then, we launched a multi-clustered DDoS, where

the 100 bots have been split over C = 4 clusters, with sizes

10, 20, 30, 40 (cluster ordering is immaterial, since, in our simu-

lations, the bots are randomly spread over the network). The EDR

of each cluster has been correspondingly reduced by a factor 4.

For the multi-clustered scenario, the identification algorithms are

BotClusterBuster and UnionBotBuster. As regards the threshold

parameters of BotClusterBuster, we set: κ = 1, ξ = 1/10. Both

choices are not “too selective”, in the sense that they tend to favor

cluster inclusion, and, hence, they tend to increase ηnor. In fact,

κ = 1 corresponds to a low reference attacking rate. Likewise,

ξ = 1/10 corresponds to assume that the smallest cluster must

contribute to the total attacking rate for at least one tenth of the

total, which seems a rather conservative choice.

In Fig. 2, we display ηbot and ηnor as functions of time. Points

of each curve correspond to the algorithms’ output sampled each

0.25 seconds, with the average performance indices estimated

over 100 Monte Carlo runs. As a general comment, we see that all

algorithms do their job properly, since: i) the fraction of correctly

banned users increases up to unity as time elapses, matching the

theoretical results about algorithms’ consistency; ii) the fraction

of erroneously banned users is kept small. It is not zero, as a

consequence of the forewarned imperfect verification of the BIC.

Let us first compare the single-cluster case to the multi-clustered

case. In particular, we focus on the comparison between the
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maximal-cluster rule (single) and BotClusterBuster (multi). We

see that ηnor is in practice zero for both cases (dashed red curve

almost perfectly superimposed to dashed black curve). Switching

to ηbot, we see that the performance in the multi-clustered case

outperforms the performance corresponding to the single-cluster

case, but for uninteresting small values of ηbot. Such behavior can

be explained as follows. The power of a botnet cluster is ruled

by the EDR, which, in the multi-clustered case, is smaller than

the EDR of the single-cluster case. Now, provided that the cluster

selection operates properly, the main factor ruling the algorithm

performance is the EDR. Accordingly, the botnet identification is

quicker in the multi-clustered case (lower EDR ⇔ lower attack

strength) than in the single-cluster case (higher EDR ⇔ higher

attack strength). We now move on examining the connections

between the cluster-expurgation rule and the union rule. The

fraction of banned users for the latter is always higher than that

corresponding to the former. This behavior is expected, since

the union rule does not attempt to select the best cluster(s), but

merges all candidate bots. Clearly, the increase in the percentage

of correctly banned users is paid in the coin of an undesired

increase of the wrongly banned ones.

In a second scenario (see Fig. 3), we consider two different

implementations of the multi-clustered DDoS. In a first setting

(case 1 in Fig. 3), we make the identification problem more

challenging by i) reducing the individual bots transmission rate

(by a factor 2); ii) reducing the size of the smallest botnet cluster,

with the cluster sizes being 5, 20, 30, 45. In the second setting

(case 2 in Fig. 3), we still work with the reduced transmission

rate, but the cluster sizes are restored to the values 10, 20, 30, 40,

while we reduce the value of the cluster-selection parameter

(ξ = 1/20). With this choice, we are in a sense over-estimating

the maximum number of clusters, and, hence, we are favoring the

inclusion of spurious clusters in the final estimate. The results of

the experiments are displayed in Fig. 3. We start by focusing

on the BotClusterBuster algorithm. As a general trend (applying

both to case 1 and case 2) we see that the new challenges

(reduced transmission rate, reduced cluster size, reduced threshold

parameter) correspond to an increase of ηnor. This is expected,

since all the modifications w.r.t. the setting of Fig. 2 goes in the

direction of favoring the inclusion of spurious clusters.

In contrast, as regards ηbot, the situation changes in the two

cases. In case 1, the low value of the smallest cluster size

(equal to 5), leads to a violation of hypothesis (11), which forces

BotClusterBuster to exclude the smallest cluster, and in turn

explains why ηbot saturates to 0.95 as time elapses. Instead, in

case 2, the variations of the sensible parameters are not sufficient

to impair consistency. As regards the UnionBotBuster algorithm,

considerations similar to the cases in Fig. 2 can be drawn.

However, since now the observation window is increased, we

notice an increasing trend in ηnor, which is probably due to the

fact that, even if the spurious clusters are typically few and small,

the union rule tend to enhance their contribution.

As a result of the conducted analysis, some useful insights can

be gained. While no superiority of one class of algorithms over

the other class can be generally claimed, we feel that algorithms

performing a cluster selection could be more appropriate in

typical DDoS scenarios, for the following reason. In a DDoS

attack, the main goals of the network defender are: i) avoiding

that the destination site crashes; ii) guaranteeing proper service

to the legitimate users. Thus, it seems preferable to ban few
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Fig. 3. Expected fraction of banned users (estimated over 100 Monte Carlo runs)
as a function of time, for different parameters of the multi-clustered DDoS and
of the algorithms. The network is made of 100 normal users and 100 bots.

normal users (lower ηnor), at the price of losing some bots (lower

ηbot). Indeed, banning, e.g., 95% of the bots should not impair

the destination site, and keeping ηnor as low as possible means

minimizing the number of normal users with denied service.
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