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Abstract—We propose, under the form of a short overview,
to stress the interest of graph to encode the ‘“topological”
structure of networks hidden in images especially when applied
in life sciences. We point toward existing computer science
tools to extract such structural graph from images. We then
illustrate different applications, such as segmentation, denoising,
and simulation on practical examples of various bioimaging
domains including vascular networks observed with fluorescent
microscopy in 2D imaging, macroscopic root systems observed in
2D optical intensity imaging, and 3D porosity networks of seed
observed in absorption X-ray microtomography.

I. INTRODUCTION

Graph-based image processing is a growing field of infor-
mation sciences [7]. In a large part of this field the graph
are mainly associated to concepts of high level such as en-
ergy minimization, partial differential equation, mathematical
morphology, .... By contrast, in this work, we consider
situations where the graph directly corresponds to an intuitive
representation of a structure. In this communication, we con-
sider the broad domain of bioimaging which produces images
constituted by underlying structural networks from which one
intend to extract topological informations. The extraction of
information from such networks requires segmentation meth-
ods specifically designed to preserve the topological structure
of the network hidden in the image. A first attempt in this
direction with an original graph-based representation approach
has recently been introduced [3]. We propose three extensions
of this work to illustrate its generical value.

II. ROBUST GRAPH REPRESENTATION OF MUSCLE FIBERS
IN FLUORESCENT MICROSCOPY

We shortly recall the image processing algorithm recently
introduced in [3] for graph-based segmentation. In [3] this al-
gorithm was illustrated on a specific biomedical problem, mice
colon’s characterization and classification. We demonstrate in
this section that the approach of [3] is generic and can be
successfully applied to other classes of bioimaging problems.

The pipeline introduced in [3] takes as input images that
can be seen as noisy images of a structural network over a
background. To produce a representation of this network that
allows to extract its topology, a first step is a segmentation
block assumed controlled by the parameter 6. A second step
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is a skeletonization block followed by the third step which
corresponds to the creation of a graph. Therefrom, the last
step consists in analyzing the topology of the graph with
various graph metrics. To ensure that the topology of the
graph extracted from our pipeline fits with the topology of the
real structural graph imaged, the segmentation of the image is
realized jointly with the topological analysis of the graph. The
pipeline is applied for a set of the segmentation parameters 6.
The selected segmentation parameters are considered optimal
if they produce a graph with topology satisfying a criteria of
stability thus producing a robust graph representation.

The algorithm of Fig. 1 is applied to fluorescent microscopy
images of muscles where the informational task of biological
interest is the measure of the muscle fibers. The muscle
used comes from mice. The Tibialis Anterior of these mice
has been extracted and frozen. Transversal section of 7 um
have been realized and received a dye which highlights the
tissue surrounding each fiber. Image acquisition is done with
a X20 lens on a Zeiss Axio observer Z1. As visible in
Fig. 2, the images are rather well contrasted. The difficulty
comes from the possible blur or decrease of the fluorescence
on some fibers. We applied the algorithm of Fig. 1 on the
images of Fig. 2 A and B. We use the same segmentation
algorithm as in [3] with a simple adaptive local thresholding
method [11] based on a single segmentation parameter 6
corresponding to the size of the local patch on which the
threshold is computed. The evolution of the graph metrics
plotted as a function of the segmentation parameter 6 are given
in Fig. 3. Here we plotted the average degree which is the
average number of neighbors in the graph for each node, the
average distance which is the average distance between two
nodes in the graph and the clustering coefficient [12] which
corresponds to the average value of the ratio between the
existing and possible edges in a node’s neighborhood. The
typical evolution for these three graph metrics, is the same
as the one described in [3] for another problem, i.e. a non
monotonic evolution with a rapid variation peak followed by a
stationary “plateau” reached when the segmentation parameter
overpasses the typical size of the muscle fiber (10 pum). The
skeleton extracted with the graph are not perfect especially on
very tiny structures as visible on Fig. 2C. Other segmentation
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Fig. 1. General description of the image processing pipeline proposed for
the graph representation of images with underlying networks. The feedback
loop expresses that the segmentation parameters are tuned to satisfy a stability
criterion of the graph metric.

techniques have recently been proposed in the literature for the
muscle fiber segmentation [10], [6] of similar images. They
are based on different approaches (active contour for [10] and
erosion-dilatation morphomathematics for [6]) and it would be
interesting to compare the results. Instead, we choose in the
following sections to further demonstrate the interest of the
method [3] for other bioimaging problems.

III. GRAPH-BASED DENOISING OF SKELETONIZED
ROOT-SYSTEMS

In this section, we demonstrate that the robust graph-based
representation recalled in the previous section can be used to
other tasks than the segmentation. To this end, we consider
another bioimaging problem, the analysis of root systems in
reflectance intensity imaging. Roots continuously grow hidden
in the soil, and form complex 3D structures. Monitoring this
biological process by automated computer vision is one of
the most challenging tasks in imaging and image analysis
for the plant sciences. The development of various imaging
systems to address this challenge with rhizotron in projected
2D or X-ray tomography in 3D has recently triggered many
developments in image analysis [8] to extract phenotypic traits

ISBN 978-0-9928626-7-1 © EURASIP 2017

.

i
.

i

i04§

Fig. 2. Example of graph extracted from the pipeline of Fig. 1. On panel
A, and B raw fluorescence microscopy images of muscle fibers. Image B is
well contrasted and Image A shows typical blur and spatial inhomogeneity of
fluorescence. On panel C, D superposition of the segmented images and the
topological graph with in green dots the position of the nodes in the graph
and in green lines the edges. Panels E, F show the graph corresponding to
the images A and B.

1l , : average degree ,
[/}
(8]
= 0.8 1
(0]
IS
:_—%_ 06 clustering coefficient )
>
2 0.4 1
N .
(—g average distance
502 1
c

O 4

200 300 400 500
segmentation parameter 6

0 100 600

Fig. 3. Normalized graph metrics as a function of the segmentation parameter
for the two images of Fig. 2. The red line is for the image of Fig. 2A and
the blue line for the image of Fig. 2B.
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of root systems or in informatics to define universal description
formats for root systems based on graphs [9]. However,
despite these important efforts to promote reproducible science
practices, specific issues, brought by the diversity of imaging
systems and the richness of fundamental biological questions,
continue to pop up and remain to be addressed. We focus
here on the problem of single root systems composed of a
primary root and secondary roots imaged with a rhizotron
at a stage of development where secondary roots touch. The
problem of root crossings has recently been addressed [2],
[1] with inpainting methods based on anisotropic diffusion
with partial differential equations. This technique gives good
performances to separate roots when they cross with rather
large angle (typically larger than 3 °). However, the situation of
almost parallel roots is very common. This may cause artifacts
in the root-system analysis and thus remains, to the best of our
knowledge, to be addressed. For illustration, we process the
image of Fig. 4A where a vertical primary root is connected to
horizontal secondary roots which touch themselves. A current
approach to extract the architecture of the root system is to
perform after several preprocesses a morphological skeleton
of the root system. As visible in Fig. 4B, such an approach
fails to separate the secondary roots which are connected in
the skeleton (D1 in Fig. 4B). Also, skeletonization artifacts
(D2, in Fig 4B) may cause false detections of secondary
roots. A possible way to overcome this would be to use more
sophisticated image preprocessing to enhance the separation
between secondary roots and smooth the spurious features in
the image. Instead, we propose to use the topology of the root
system as a prior to denoise the skeleton.

In a first stage, the algorithm of Fig. 1 is applied to
produce a graph and all the useful data (length, position, name,
etc.) about crossings, or nodes in graph nomenclature, and
connections, or edges in graph nomenclature, are stored in a
node/edge structure. This structure allows us, in the second
stage of our approach, to filter skeletonization artifacts (D2)
by erasing all the “short” edges that are only connected to one
node. The results can be seen as a graph representation of the
adjacency matrix in Fig. 4D or as a detailed representation
of the node/edge structure in Fig. 4C. In a second stage, the
adjacency matrix is analyzed in order to detect the primary
root and to direct the matrix. Considering that the primary
root contains the most crossings, the detection of primary root
is trivial, and can be done by searching the longest path in the
adjacency matrix via the Dijkstra’s algorithm [5]. Then all the
edges are oriented one by one to flee from the primary root
and the new oriented graph, shown in Fig. 4E, is created. In
the last stage, the secondary roots are detected. Considering
that for each secondary root there is a node (crossing) on
the primary root and each secondary root ends with a leaf-
node in the oriented adjacency matrix, the chain of nodes and
edges of each secondary root is calculated using a shortest path
algorithm. Our process produces the oriented graph of Fig. 4G
which correctly restitutes the topology of the root system and
encodes the number, position, and length of the primary and
secondary roots. Artifacts in the skeletonized root-system of
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Fig. 4. (A) Rhizotron image of a taproot system and its skeleton (B).
Node/edge structure is given in (C) and the non-oriented graph in (D). (E)
is the oriented graph. Panel (F) shows the nodes of the primary root (blue)
and the calculated endpoints of each secondary root (green). The red lines
represent the correspondence between the starting node and end node of
each secondary root, the red numbers represent the estimated length of each
secondary root. Panel (G) gives the final graph of the taproot system.

Fig. 4B have been denoised with the graph instead of a more
conventional approach that would have focussed on denoising
the skeleton image.

IV. GRAPH-BASED SIMULATION IN 3D POROUS MEDIA

The graph-based representation discussed in the previous
section is not limited to the encoding of 2D structures. We also
applied it to the 3D images of another bioimaging problem as
demonstrated in this section. To this end, we considered X-
ray microtomography images of sugar beet seeds. As visible
in Fig.5, in these images a strong contrast is observed between
the air network and the tissue in the seed. These air networks
are known to be specially useful during the imbibition process
when an entry of water triggers the transition from an inert
dry seed into a living plant. An imbibition process is expected
to be faster when the air networks interconnect all the parts
of the seed with each other [4]. The inspection of this
connectivity can be done directly from the images. To this
end, a segmentation of the air network has first to be realized.
Then a numerical imbibition corresponding to a simple region
growing process with a zero tolerance can be launched. As
illustrated in Fig. 6 panels A to D, two points are connected
if after convergence the region growing process includes these
two points. This iterative region growing process is very time-
consuming. That is why we consider the possibility to instead
use the graph representation of the segmented air network. The
graph-based encoding of the air networks enables, as shown
in Fig. 6 panel E and F, by direct computation along the
adjacency matrix to determine whether a pore is connected to
another one. The computation cost information concerning the
comparison of the region growing and graph-based approach
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Fig. 5. Panel A: X-ray microtomography of a dry sugar beet seed. Solid blue
and yellow boxes highlight the contrast between air network in dark and the
seed tissue in hypersignal with panels B, C located in the starch and panels
E, F in the cork. The contrast is sufficient in panel C and F so that it is easy
by simple thresholding to segment as shown in panels D and G the respective
air network in white from the surrounding tissue in black.

Fig. 6. Panels A to D, are snapshots of the imbibition process simulated as
an iterative region growing process from one point in the segmented binary
data included in the blue cube in Fig. SE. Panel E represents the graph
corresponding to the same cube of data. The red line highlights the possibility
of a path from one point to another in the cube from the graph. Panel F
corresponds to the path, inside the binary data, between the two points built
using the red path from panel E and the node/edge structure.

is given in Fig. 5 where the size of the data and the number of
floating-point operations (FLOPs) that each process required
on our computer. With our 2 processors Intel Xeon E5620@
2.4Ghz with 4 cores we found that simulating the imbibition
along the imaging with region growing was 2700 times slower
than doing it along a graph and that the manipulated data
was 10 times bigger when simulating region growing than
with the graph approach. This demonstrates, on an example
distinct from the previous sections of this communication, the
added value of a graph-based representation for the analysis
of network in bioimaging.

V. CONCLUSION

We have briefly illustrated the genericity of the algorithm
recently introduced in [3] for the analysis of networks in
life sciences with various bioimaging problems and for vari-
ous informational tasks (segmentation, denoising, simulation).
Other tasks may benefit from this technically simple approach
(registration for instance) where some prior on the struc-
tural topology of the underlying network helps in the image
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Fig. 7. Overall view of the size of the structures generated on a 3D X-ray
microtomography samples of sugar beet seed with 64 X 64 x 64 pixels. The
size of the data structure attached to the graph is (56.8 k octets) including
the adjacency matrix, the list of vertices verticeList and the list of edges
edgeList. This is approximately 10 times smaller than the size of the
segmented image. In terms of computation time to reach the results, the
computation of the connectivity of the air network takes approximately 2700
times longer to simulate it with numerical imbibition, i.e. region growing,
than by flying along the extracted graph.

processing step. Each bioimaging problem presented would
also, beyond the proof of feasibility given here, deserve more
attention by benchmark with alternative methods (based on
graph or not) on larger datasets.
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