
Teaching Multi-Core DSP Implementation on EVM

C6678 Board

Aleksei Kharin, Sergey Vityazev, and Vladimir Vityazev

Department of Telecommunications and Radio Engineering Foundations

Ryazan State Radio Engineering University, RSREU

Ryazan, Russia

vityazev.s.v@tor.rsreu.ru

Abstract—Teaching implementation of digital signal

processing systems plays a very important role in recent

technical education. The multi-core digital signal processor

(DSP) is a new type of architecture widely used now in the

industry. A new course on multi-core DSP programming is

considered in this paper. The lab experiments are described.

The course has been developed for the TMS320C6678 multi-

core DSPs. This paper provides educators with a content that

cover theoretical and technical skills that are required by

industry.

Keywords—multi-core; DSP; signal processing;

programming; real-time processing

I. INTRODUCTION

The adoption of courses on the practical implementation
of digital signal processing systems into educational
programs on Electrical & Electronic Engineering or
Computer Science is widely used in universities. Many such
courses have already been developed for different hardware
platforms, including general-purpose processors (GPPs) [1-
3], field programmable gate arrays (FPGAs) [4, 5], graphical
processing units (GPUs) [6] and digital signal processors
(DSPs), which are historically the first integrated circuits
specially designed to solve digital signal processing tasks in
real-time with low-power consumptions. The educational
courses on DSP programming are described in [7-11]. In this
paper we concentrate on multicore (DSPs).

During the last decades, DSP has evolved dramatically,
moving from a single chip with one core to a multi-core
heterogeneous System-On-a-Chip (SoC). The processor
industry stepped to multi-core architectures in the second
decade of the 21st century [12-13]. The multi-core approach
tried to solve the problem of higher computations while
staying low power, but it produced a lot of new problems,
including algorithm parallelization, multi-core programming
and parallel threads synchronization. Multi-core gave new
challenges to universities. Previous courses had to be
updated or new ones had to be developed. It became
necessary to give much more information to students within
the course. New terms and new principles started to be used.
New architectural components such as new instructions, new
peripherals, new bus structure and hardware accelerators
appeared. On the software side, new programming tools

started to be used such as Open Multi-Processing (OpenMP)
and Open Computing Language (OpenCL).

In this paper, a new educational course on multi-core
DSP programming is considered. The goal of the course is to
give students a knowledge base on modern approaches to
multi-core DSP software development. The structure of the
course is offered. The laboratory experiments are designed
and described. The course has been developed for the
TMS320C6678 multi-core DSP from Texas Instruments
(TI).

The paper is divided into six sections. After the
introduction, the laboratory infrastructure including
laboratory equipment and software tools is described in
Section II. Section III considers the details of lab
experiments. The course project which students do to
consolidate the knowledge is described in Section IV.
Section V deals with assessment aspects. Finally, some
conclusions are made in Section VI.

II. LABORATORY INFRASTRUCTURE

A dedicated digital signal processing laboratory
supporting the development of real-time software is used for
teaching multi-core DSP programming. The laboratory is
equipped with EVM C6678 evaluation boards [14]. The
diagram of that board is illustrated in Fig. 1. The board is
based on TMS320C6678 DSP. This is an 8-core
homogenous processor with all cores of the same type. Each
core is a powerful 1-GHz DSP with very long instruction
word (VLIW) architecture capable of 32 milliard multiply-
accumulate operations per second (GMACS) in a fixed-point
arithmetic and 16 milliard floating-point operations per
second (GFLOPS) in a floating-point arithmetic. So each
core is a high performance state-of-the-art device and 8 cores
on one chip make it possible to increase its productivity 8
times theoretically. During the labs, students learn how to
achieve this maximum level of performance and analyze the
reasons which limit the performance in practice.

The board does not contain any analog-to-digital
convertor (ADC), so it can not be used for direct analog
signal processing. It has a number of digital interfaces
instead including Ethernet, PCIe and SRIO, Hyperlink and
some others. It also includes 512 Mbytes of DDR3 memory
to store data and code. During the labs the following

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2423

Fig. 1. Block diagram of TMS320C6678 evaluation board

approach is used. A model of a signal is generated and stored
into DDR3 onboard memory. This generation is performed
on a personal computer or on the board but cannot be
accomplished in real-time.After the data are ready in the
external memory, real-time signal processing can take place.
The results are also stored into DDR3 memory. The results
are verified and processing time is measured.

Software in the laboratory includes Code Composer
Studio (CCS) integrated development environment (IDE)
and software development kit (SDK) from TI that give all
the instrumentations required for multi-core DSP
programming. The MATLAB environment is an additional
specialized software component used in the laboratory for
input signal generation and output signal analysis and
visualization. The board and student workplace in the
laboratory are shown in Fig. 2.

III. LAB EXPERIMENTS

The course contains the lectures and the lab experiments.
The required theory is given to the students at the lectures
and the labs allow students to consolidate the knowledge
with practice. The following lab experiments are offered to
the students throughout the course fully reflecting the
contents of the course (Fig. 3 and 4).

A. Lab #1. Introduction to CCS

The general task of real-time digital signal processing is
discussed at the beginning of the course. Fast repetitive
multiply-accumulate (MAC) calculation is stated to be the
key to efficient signal processing implementation, and the
programming of the processor is considered as a basic way
to digital design.

A simple program is written in C-language during the lab
#1. The program implements a dot product of two pre-
calculated vectors – 128-length floating-point format
coefficients and signal samples. The program is written as a
CCS-project. It is compiled and loaded onto the DSP on the
board. It is run and gives some predefined results.

During the lab students get knowledge of how to work in
CCS, how to connect to the real hardware, and how to run
their code on DSP. Only one-core is used at this stage.
Students implement a basic digital signal processing
example. They also measure the processing time with cycle-
count registers and make some statements about real-time

Fig. 2. The board and the workplace in the laboratory

processing. So, the lab #1 is an introduction to the tools and
DSP programming in general.

B. Lab #2. Architecture

The architecture of the TMS320C6678 DSP with special
attention paid to single core architecture is considered at the
lectures and is better understood during lab #2. The
computational power of the TMS320C6678 as of any other
multi-core processor is achieved not by the number of cores
but by the architecture of each of the cores. Moving from
single to eight cores theoretically gives eight times the
performance gain, but such a gain is not achievable in
practice. Single-core software optimization is able to give
much better results. One should not think about a multi-core
processor as a computational machine capable of solving any
computational problem efficiently. A good single core
solution should be achieved first and then eight-core
implementation can be started. All computational capabilities
and limitations are concentrated inside the core. It is very
important to explain to students these aspects of working
with multi-core. This is the reason the course is started from
the single core architecture description and its influence on
the overall device performance.

During the lab #2, students modify the program from lab
#1 rewriting the dot product function in assembly and calling
it from C-project. The assembly code is written for the
floating-point arithmetic case. The execution time is
measured and compared with the maximum DSP
capabilities.

C. Lab #3. Optimization

The course continues with single-core optimization. It is
very important to explain to students that multi-core
implementation does not make sense if the code for a single
core is not optimized. Optimization is considered as a
process of software improvement aimed at one of the
optimization criteria. Typical criteria are processing time and
code size. The processing time optimization criterion is
considered throughout the course as it is the most common
requirement. Optimization and debugging join together into
a common process of software development.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2424

Fig. 3. Course structure

Fig. 4. Course main steps

During the lab, students implement the dot product
function with hand-optimized assembly. They learn how to
use VLIW DSP architecture more efficiently with parallel
instructions and software pipelining technique. Processing
time decreases from 2700 processor cycles to 70 cycles,
which means about 40 times performance gain with single-
core optimization.

Optimization in C is accomplished then for the same dot
product function. The efficient code is generated by the
compiler with optimization property turned on. Compiler
feedback is analyzed. Additionally, C extensions including
pragma directives and keywords are used to achieve
processing time similar to hand optimized assembler [15].

D. Lab #4. OpenMP

The course moves from single to multi-core
implementation at this stage. Introduction to parallel
processing is given first during lectures. Basic parallel
computing notions are considered including parallel threads,
data racing, thread synchronization, shared memory accesses
and cache coherency.

First multi-core project is accomplished with the
OpenMP technique as the simplest way of software
parallelization. The dot product function becomes too simple
to be implemented on several cores, so students move to a
more complicated task of finite impulse response (FIR)
filtering. A frame of input samples is generated in advance
and loaded into the shared memory. FIR coefficients are also
known and preloaded into the memory. Simple sinusoidal
signals are used to test the program. The length of a frame
can be about several thousands and the length of impulse
response is 128. FIR-filtering is performed based on the dot
product function written and optimized within previous labs.
Execution times of single- and multi-core implementations
are measured and compared.

It is very important for the students at this first stage of
multi-core programming to realize that multi-core overheads
always take place and this should be in mind during
parallelization strategy selection. To study this, students
perform parallelization at different levels. In the case of the
FIR-filter, they can choose a different frame length. The
greater the length, the more computations are performed
independently, resulting in a higher processing time to
parallelization overhead ratio.

E. Lab #5. IPC

The same task of FIR-filtering is performed then with
another method of parallel software design called Inter
Processor Communication (IPC). In a broad sense, IPC is a
common name for any communication between cores. But
talking about TI’s processors, the user should think of IPC as
a software package of modules developed by Texas
Instruments to enable inter processor communications for a
variety of TI’s processors (not only DSPs).

Students develop two projects: one for the master core
and another one for all slave cores. The master core makes
data ready and performs general configuration. Then the
master core sends messages to the slave cores. These
messages bring information about which data should be
processed by slave cores: a pointer to the beginning of data
chunks inside input buffer, the length of chunks and a pointer
to a part of the output buffer, slave cores have to calculate.
This is done with MessageQ module APIs. Then the master
core waits for the response from all slave cores. Slave cores
send messages to the master core with information about
their readiness for processing. The master core notifies slave
cores that they may start processing. This is done with Notify
module APIs. All cores make their part of calculations. They
are synchronized again after they finish the processing.

Students verify the result of multi-core filtering and
measure the time for signal processing. This time can be
compared to the single core processing time and to the
OpenMP parallel processing time.

F. Lab #6. Multicore Navigator

Many modern multi-core architectures use special
hardware to facilitate fast data movements and job
distribution inside the chip [16, 17]. The multicore Navigator
achieves this in the TMS320C6678 DSP. It manages fast and

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2425

flexible data movements inside the multicore system and
coordinates the work of the cores. Students study data
movement with the Navigator during lab #6. Lab #7
considers the second function of the Navigator – job
distribution with the Open Event Machine (OpenEM).

The task is still the same. FIR-filtering is performed and
parallelized into 8 cores of C6678 DSP. The parallelization
strategy is similar to the IPC case but special hardware (the
Navigator) is used. Again we do not move any data that
should be processed. The input signal is located in the shared
memory and the output signal is written to the shared
memory too. The multicore Navigator is used to send
processing information from the master core to the slave
cores and to perform synchronization.

There are two possible ways to program the multicore
Navigator: to do it through registers directly or to use TI’s
low level drivers. It is better to start with registers to
understand how to work with the Navigator. But to make it
easier to work with registers, we implemented some kind of
API that is low enough to show how to program the
multicore Navigator through registers but high enough not to
bother students with writing to registers themselves.

When the laboratory is completed, students can compare
the resulting processing time with that previously received in
the OpenMP and IPC labs. These results show that, working
at a low level with hardware modules, the best performance
is achieved.

G. Lab #7. OpenEM

OpenEM is an open standard for systems with dynamic
tasks distribution. It allows the dispatch of dynamically
created tasks between cores in multicore systems. Texas
Instruments implement OpenEM for their multicore DSPs
using capabilities of the multicore Navigator hardware.
Actually, OpenEM is implemented as a firmware for PDSP
(Packed Data Structure Processor) which is a part of the
multicore Navigator. OpenEM utilizes the multicore
Navigator resources which is the reason we talk about using
OpenEM after the multicore Navigator despite being easier
to use and to understand.

After the concept of OpenEM is given and all the
necessary details are discussed at the lecture, students go
through the laboratory practice. The task for the laboratory is
still the same – perform signal frame filtering with
computation distributed across 8 cores. The input signal
frame consists of 8128 samples and is loaded into the
internal shared memory. The output buffer has a length of
8000 samples and is also located in the shared memory. A
128-coefficient filter impulse response is located in the local
memory of each core. The master core configures the
system, including OpenEM. The master core creates
OpenEM events. There are two event queues. One queue
includes processing events. There are 8 of them, so each
event can be processed on a separate core. Processing events
includes information about what to process (a pointer to a
part of the input buffer, buffer length, a pointer to a part of
the output buffer). All cores process the events. It means they
do filtering. The second event queue is processed then. The

events in the second queue just signal the cores that they may
stop. The master core outputs the results and time of
processing.

IV. COURSE PROJECT

The course project is accomplished by students to
consolidate their knowledge and to apply it to practical tasks.
Students accomplish the project individually. The theme of
the project depends on the program students are studying.
We will consider here an example of a project which is
offered to the students studying for communications.

The task of signal demodulation is solved by students
during the course project. A teacher gives students signal
records in a raw data format. Each signal is a phrase recorded
with the MATLAB. It has a duration of several seconds and
is recorded at a sampling frequency of 70-100 kHz. The
spectrum of speech is moved to a carrier frequency which is
about 20 kHz. Additionally, some narrowband noise is added
to the signal. The spectrums of the speech and the noise do
not overlapped. Students have to restore the phrase. They
demodulate the signal multiplying it by a harmonic and do
FIR filtering. Both procedures should be implemented on a
single core first. The software should be optimized. Multi-
core implementation should be implemented then with any
two different parallelization techniques, for example,
OpenMP and IPC. No strict requirements to the final
software are defined. Students are free to choose the limits
for the optimization and to select parallelization schemes.

V. COURSE ASSESSMENT

Much information is given to the students during the
course and the materials are difficult enough. That is why
formative assessment is absolutely necessary during the
course allowing a check to ensure that the students
understand the materials. The formative assessment is built
upon the lab experiments. A teacher and his assistant check
if students complete the labs successfully. Moreover, each
lab is defended by the students in the oral form. The teacher
(or the assistant) have to confirm that the students understand
the lab. The formative assessment does not influence the
final grades and is used just to control the intermediate
results of learning.

The summative assessment includes a presentation of the
course project and a final exam. Each student prepares a
report on the course project in a printed form. Retrieved
signal records are also prepared by the students. The teacher
reviews the reports and checks if the signal is retrieved
correctly. Then, the course project is defended in an oral
form. The originality of the report, the correctness of
software and the understanding of the materials by the
students are taken into account during project grading.

Finally, the students pass an exam. The exam is passed in
an oral form. This gives the final grades to the students.

VI. CONCLUSION

An educational course on multi-core DSP programming
is considered in this paper. The structure of the course is

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2426

offered and the results are described. To stay relevant and to
become more efficient, the course has to be modified
regularly. More advanced courses can include heterogeneous
multi-core programming and operating systems.

REFERENCES

[1] J. O. Hamblen, “Using a Low-Cost SoC Computer and a Commercial
RTOS in an Embedded Systems Design Course,” IEEE Trans. on
Education, vol. 51, issue 3, 2008, pp. 356-363.

[2] A. J. Kornecki, J. Zalewski, and D. Eyassu, “Learning real-time
programming concepts through VxWorks lab experiments,”
Thirteenth Conference on Software Engineering Education and
Training, 2000, pp. 294-301.

[3] M. A. Wickert, “Using the ARM Cortex-M4 and the CMSIS-DSP
library for teaching real-time DSP,” IEEE Signal Processing and
Signal Processing Education Workshop (SP/SPE), 2015, pp. 283-288.

[4] N. Kehtarnavaz, and S. Mahotra, “FPGA implementation made easy
for applied digital signal processing courses,” IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
2011, pp. 2892-2895.

[5] C. Haba, “Using FPGA development boards for multi-course
laboratory support,” IEEE Global Engineering Education Conference
(EDUCON), 2014, pp. 794-797.

[6] A. Asaduzzaman, R. Asmatulu, and M. Rahman, “Teaching Parallel
Programming for Time-Efficient Computer Applications,”
International Journal of Computer Applications, vol. 90, No 7, March
2014 pp. 18-25.

[7] S. Gannot, and V. Avrin, “A Simulink and Texas instruments C6713
based digital signal processing laboratory,” European Signal
Processing Conference, 2006, pp. 1–4.

[8] C. E. Wick, and G. E. Piper, “Using the ADSP-21061 SHARC EZ-
KIT in undergraduate DSP oriented courses,” Frontiers in Education
Conference, vol. 2, 1998, pp. 691-694.

[9] D. S. Reay, “OMAP-L138 low cost development kit (LCDK) for
hands-on DSP teaching,” European DSP Education and Research
Conference (EDERC), 2012, pp. 164-168.

[10] L. G. Huettel, “A DSP Hardware-Based Laboratory for Signals and
Systems,” 2006 IEEE 12th Digital Signal Processing Workshop & 4th
IEEE Signal Processing Education Workshop, 2006, pp. 456–459.

[11] D. Reay, “Digital Signal Processing and Applications with the
OMAP-L138 eXperimenter”, Hoboken, New Jersey, John Wiley &
Sons, Inc., p. 340, 2012.

[12] G. Blake, R.G. Dreslinski, T. Mudge, "A survey of multicore
processors," Signal Processing Magazine, vol. 26, no. 6, pp. 26-37,
Nov. 2009.

[13] L.J. Karam, I. AlKamal, A. Gatherer, G.A. Frantz, "Trends in
multicore DSP platforms," Signal Processing Magazine, vol. 26, no.
6, pp. 38-49, 2009.

[14] TMDXEVM6678L EVM Technical Reference Manual, SPRUH58,
Version 2.0, Texas Instruments, p. 88, 2011.

[15] T. Hahn, J. Humphreys, A. Fritsch, D. Greenstreet, “Demystifying
digital signal processing (DSP) programming: The ease in realizing
implementations with TI DSPs,” Dallas, Texas, Texas Instruments
Inc., p. 10, 2015.

[16] S. K. Moore, “Breaking the Multicore Bottleneck,” IEEE Spectrum,
November 2016, p. 16.

[17] E. Biscondi, T. Flanagan, F. Fruth, Z. Lin, F. Moerman, “Maximizing
Multicore Efficiency with Navigator Runtime,” Texas Instruments,
2012

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2427

