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Abstract—Activity recognition from first-person (ego-centric) 

videos has recently gained attention due to the increasing ubiquity 

of the wearable cameras. There has been a surge of efforts 

adapting existing feature descriptors and designing new 

descriptors for the first-person videos. An effective activity 

recognition system requires selection and use of complementary 

features and appropriate kernels for each feature. In this study, 

we propose a data-driven framework for first-person activity 

recognition which effectively selects and combines features and 

their respective kernels during the training. Our experimental 

results show that use of Multiple Kernel Learning (MKL) and 

Boosted MKL in first-person activity recognition problem exhibits 

improved results in comparison to the state-of-the-art. In addition, 

these techniques enable the expansion of the framework with new 

features in an efficient and convenient way. 

Keywords—multiple kernel learning; kernel boosting; first-

person; ego-centric videos; activity recognition  

I.  INTRODUCTION 

Activity recognition is considered as a supervised learning 
problem which consists of an activity representation model and 
an activity classification method. The activity class in the query 
video is determined based on a dictionary of labelled activity 
samples. The performance of an activity recognition system is 
mainly dependent on the effectiveness of the representation 
model and the accuracy of the classification method. 

Third-person videos are captured using a camera pointing at 
the person or a group of persons. The camera itself is not 
involved in the action and it is usually static, as opposed to the 
first-person videos. In the first-person perspective, the camera is 
attached to the actor - usually to the head or to the chest of the 
person. The actor is involved in the events and the camera 
undergoes large amounts of ego-motion such as moving up or 
down and turning with the activity of the user. This requires 
taking the ego-motion and the distinctive perspective of the 
videos into consideration while tackling first-person activity 
recognition problems. In the activity representation model, the 
ego-motion is modelled through the use of global features and 
the other motion occurring in the field of view of the camera are 
modelled through local features. In [1], Histogram of Optical 
Flow (HOF) is used as a global feature and 3D XYT space-time 
features are used as local features, then multi-channel kernels in 
SVM are used in order to combine these features for activity 

recognition. In [2], dense optical flows, Local Binary Patterns 
(LBP) are used as global features and cuboid and Spatial-
Temporal Interest Points (STIP) are used as local features. These 
features are used in a similar classification setting to recognize 
animal (dog) activities. In [3], a number of new multi-
dimensional motion-based descriptors are applied. These global 
descriptors are used together by concatenating them in a vector 
in SVM and comparable results to [1] and [2] are obtained 
without using any local features. Recently, first-person vision 
activity recognition has become a research topic of interest also 
for robotics applications to identify activities in the field of view 
of the robot [4]. In these applications, different from the 
traditional works, the data can be acquired using RGB-D sensors 
as the applications are restricted to indoor applications where use 
of RGB-D sensors are feasible. Availability of depth 
information allows the use of depth-based descriptors and 
skeletal data. In the classification stage, Radial Basis Function 
(RBF) kernels are used in SVM and the kernel parameters are 
set by cross-validation.  

Use of MKL in a multimodal setting to fuse different audio 
and video features has been proposed for event detection in web 
videos [5]. It has been shown that MKL performs well even 
when redundant features are used and it outperforms other 
popular methods such as wrappers, filters and boosting as well 
[6]. MKL has been shown to produce promising results during 
the identification of emergent leaders in meeting scenarios [7].  

In the literature, the methods proposed for first-person 
activity recognition uses a variety of features having distinctive 
information, which needs to be combined. Use of a standard 
learning framework without particular extension on feature 
selection and weighting implies the use of pre-set rules, such as 
unweighted sum, which gives equal preference to each feature 
independent of its classification ability. In [1], use of multi-
channel kernels is proposed to combine global and local 
features. Each feature is considered as a separate channel and a 
pre-defined rule using exponents is utilized to combine them. 
Use of multimodal Fisher kernel vectors has been investigated 
to combine video and sensor features for ego-centric activity 
recognition [8]. In [3], all the features are concatenated in a 
single vector which is then fed into the learning algorithm, 
essentially giving each feature equal weight. The detailed 
analysis of adding and removing features demonstrates their 
effects on the performance, but the optimal combination of the 

This work is supported by The Scientific and Technological Research 
Council of Turkey under TUBITAK BIDEB-2219 grant no 1059B191500048. 

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1085



features is left as an open research question. While different 
types of kernels are evaluated, use of different kernel parameters 
is not investigated and these kernel variations are not combined. 
It can be argued that the performance could be improved by 
using a combination of different kernels and kernel parameters. 

This study proposes an innovative approach for first-person 
activity recognition using MKL and Boosted MKL methods. 
The novelty of this study lies in its dynamic and adaptive 
structure which fuses different features and different kernels in 
an optimized way instead of using pre-determined weights. 
Dynamic weighting of complementary features is managed 
through a data-driven approach at the training stage. This 
solution allows to create an adaptive framework which could 
easily be customized for specific first-person activity 
recognition problems as it allows seamless integration of the 
features and expansion with new features.  

The structure of the paper is as follows: in Section 2, global 
and local motion-related features are explained. MKL and 
Boosted MKL are described thoroughly in section 3. 
Experimental results are presented in section 4 and section 5 
concludes the study.  

II. GLOBAL AND LOCAL MOTION-RELATED FEATURES 

In this section, global and local motion-related features, 
extracted from the first-person videos, are described. Global 
descriptors capture basic motion information such as the ego-
motion and local descriptors provide the complementary local 
information, which is necessary for the recognition of different 
types of activities. In this study, global motion is represented 
using two descriptors both based on optical flow information: 
Histogram of Optical Flow (HOF) [1] and Log Covariance (Log-
C) [9]. Local information is represented using Cuboids [10]. 

A. Histogram of Optical Flow (HOF) 

After calculation of the optical flow, the histogram of optical 
flows in dense grid of s by s cells, is computed. For each cell, 
optical flows are accumulated with respect to their orientations 
into 8 representative direction bins to create a histogram. Thus, 
we obtain s x s x 8 sized histogram bins from each video 
representing both spatial and temporal information. 

B. Log-Covariance (Log-C) 

Log-covariance (Log-C) descriptor is originally designed for 
third-person videos to capture different characteristics of the 
motion [10]. For this purpose, at each pixel, 12 dimensional 
optical flow-based motion-related features and intensity-based 
gradient vectors are extracted. These are calculated by intensity 
gradient of raw video sequences with respect to temporal t 
direction and first-order partial derivative of optical flow with 
respect to spatial x and y directions, spatial divergence, vorticity, 
gradient tensor and rate of strain tensor. This set of spatio-
temporal features represents dynamics of the motion in first-
person videos in a more comprehensive way than basic optical 
flow-based features. Then, compact covariance descriptors are 
created by capturing these features in the covariance matrix [9] 
since high dimensional feature vectors are not efficient for 
clustering and classification operations.  

We use matrix logarithm [11] operation to convert manifold 
of covariance matrices into Euclidean space since covariance 
matrices lie on the Riemannian manifold. 

C. Cuboids 

Cuboid features are sparse 3D XYT space-time features [10] 
and they have been used extensively for recognizing behaviour 
in third-person camera perspectives. Sparse space-time features 
have been shown to perform well for activity recognition 
applications [12].  

First, spatio-temporal Cuboid feature detector is run in order 
to detect feature locations. While the idea is similar to spatial 
detectors, detection proceeds along the temporal direction t in 
addition to the spatial x and y directions. Then, at each interest 
point, spatio-temporally windowed pixel values (i.e. flattened 
gradient vectors) are calculated to form a Cuboid. The Cuboids 
are specifically designed for behaviour recognition applications 
and they aim to detect too many features rather than too few in 
order to handle challenging conditions.  

D. Feature Clustering 

The motion information of a video by word occurrences is 
described by using the bag of visual words (BoW) approach. 
Each collection of descriptors is separately clustered into 
multiple types by K-Means algorithm. Thus, each descriptor is 
assigned to a visual word and the histograms for each video are 
computed so that representative visual word histograms of each 
video are obtained. Since each set of feature descriptors is 
clustered separately, three histograms are computed for each 
video. The histogram Hid is a w dimensional vector for the ith 
video obtained using descriptor d and w is the number of visual 
words. For each video, each descriptor histogram computed is 
concatenated and final histogram is obtained. Hi=[hi1, hi2, hi3, …, 
hiw] is the histogram of video vi, hiw is the number of wth visual 
word of the ith video. 

III. MULTIPLE KERNEL LEARNING 

In this study, we use both Multiple Kernel Learning (MKL) 

and Boosted MKL, whose details are explained in this section. 

A. Multiple Kernel Learning 

General practice in vision applications presumes a pre-
defined parametric kernel and the parameters of the kernel 
function is determined by cross-validation. Instead of using a 
single kernel or combining a number of kernels having pre-
defined rules as in multi-channel kernels, MKL aims to fuse 
different features and kernels in an optimal setting. Traditional 
MKL methods use a convex combination of kernels where all 
coefficients are non-negative and sum to 1. In parallel to the 
training of the model, weights of each kernel are optimized and 
these weights are then used in the final classifier. Effectively, 
MKL provides a data-driven solution for feature selection and 
weighting. 

Given that M represents features and L is the number of 
training data in a 2-class classification setting, we have: 

{(𝒙𝑖 , 𝑦𝑖)}𝑖=1
𝐿  , 𝒙𝑖 = {(𝒙𝑖,1, 𝒙𝑖,2, … , 𝒙𝑖,𝑀)}, 𝑦𝑖 ∈ {1, −1},  (1) 

where 𝒙𝑖,𝑚 are the feature vectors for feature m = {1,2,...,M} 

and yi are the class labels. It has to be noted that the feature 
vectors for different features might have different dimensions. 

For each feature m, pairwise differences are measured by a 
kernel function 𝐾𝑚(𝒙𝑖 , 𝒙𝑗) and as a result, we have a set of M 

kernels: {𝐾𝑚}𝑚=1
𝑀 . 
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 Learning is formulated as optimizing the coefficients {𝛼𝑖}𝑖=1
𝐿  

and b: 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝒙, 𝒙𝑗) + 𝑏

𝐿

𝑖=1

 (2) 

Then, L x L kernel matrix of pairwise comparisons 𝑘𝑖,𝑗(𝒙𝑖 , 𝒙𝑗)   

is constructed from the data. All kernel methods are designed 

to process such square matrices.  

MKL is formulated as optimizing the kernel weights {𝑐𝑚}𝑖=1
𝑀 : 

𝐾(𝒙𝑖 , 𝒙𝑗) = ∑ 𝑐𝑚𝐾𝑚(𝒙𝑖,𝑚, 𝒙𝑗,𝑚)
M

𝑚=1
 where 𝑐𝑚 ≥ 0 , 

∑ 𝑐𝑚
𝑀
𝑚=1 = 1 

(3) 

It has to be noted that in addition to using different features 

together, a number of different kernels for the same feature 

could also be used in this framework.  

Since the descriptors mentioned in section II represent 

different types of motion information, robust combination of 

these descriptors gains utter importance. To do so, instead of 

giving the same weight to each feature in classification, MKL 

could be used in order to assign a self-optimized kernel-feature 

combination for the classification problem in hand. 

SimpleMKL simplifies the optimization process based on 

mixed-norm regularization [13]. It uses gradient descent and 

iteratively determines the combination of kernels based on a 

standard SVM solver.  

B. Boosted Multiple Kernel Learning 

Boosted Multiple Kernel Learning (Boosted MKL) is an 
iterative approach to combine features and kernels effectively. 
This method aims to integrate the traditional AdaBoost iterative 
technique via a classifier learning with boosting trials and it has 
been shown to perform well in a variety of problems [14], [15].  

The details of the boosting process used in this paper are 
given in Algorithm 1. First, classifiers are trained with features 
extracted through boosting trials. At each trial, training samples 
are selected from all training videos based on a probability 
distribution and after each trial, weights of misclassified samples 
(videos) are increased. Best classifiers of each trial are then used 
to train all the training samples. Their trial performance is based 
on their weights.  

 MKL and boosted MKL have the following advantages: 
• Different kernels could be used for different features 

• Kernels having different parameters (such as the degree of the 

polynomial and variance of Gaussian) could be used together 

• Each kernel is assigned a weight which gives different weights 

to different features and kernels 
Since a variety of features having different data ranges is 

used, the feature vectors need to be first normalized. 

IV. EXPERIMENTAL RESULTS  

In this section, outcome measurements of the experiments 

and their discussion are presented in detail. 

A. Outcome Measurements 

We conduct experiments in order to evaluate the Boosted 
MKL, SimpleMKL and traditional multi-channel kernel 
approach described in [1] and [2] in terms of classification 
accuracy. We compared these three approaches on the 
segmented videos of JPL-Interaction [1] and DogCentric 
activity [2] datasets. There are 84 videos and 7 unique activities 
available in JPL dataset. At each iteration, we randomly selected 
9 training and 3 testing videos for each unique activity so that 
the dataset is split into 63 training and 21 testing videos. In 
DogCentric dataset, there are 209 videos and 10 unique 
activities. At each iteration, we randomly select half of the 
videos of each activity for training and the rest of the videos for 
testing. Each experiment has been repeated for 100 times and 
average classification accuracies at the end of all iterations are 
reported. Fig. 1 shows the confusion matrices of the activity 
recognition results using HOF, Log-C and Cuboid features and 
classification results of SimpleMKL and Boosted MKL based 
on activities.  

In addition to Gaussian and Histogram Intersection (H-Int) 
[16] kernels, a modified histogram intersection kernel (DC-Int) 
[2] was used for both datasets. In addition (JPL-Int) [1] kernel is 
also used for the JPL dataset. 

Average classification accuracies of the approaches applied 
on JPL dataset are shown in Table I. Table II shows the average 
classification performances of the approaches applied on 
DogCentric dataset. Table III shows a summary of accuracy 
results both for two and three-feature sets of SimpleMKL and 
Boosted MKL, including their comparison to the already 
existing methods of the literature on JPL and DogCentric 
datasets. Fig. 1 illustrates the confusion matrices using a single 
feature and multiple feature combinations. 
B. Discussion of the Results 

As shown in Table I and II, when only a single feature is used, 
Log-C outperforms HOF and Cuboid for all kernel types. 
Combining different types of features increases the performance 
and the best performance is achieved when all features are used 
(except for the Gaussian kernel case). 

Algorithm 1: Boosted MKL 

𝐈𝐧𝐩𝐮𝐭𝐬: (𝒙𝟏, 𝒚𝟏), … , (𝒙𝑳, 𝒚𝑳), 𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒅𝒂𝒕𝒂; 
𝑲𝒎(𝒙𝒕, 𝒙𝒏), 𝑲𝒆𝒓𝒏𝒆𝒍 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏; 𝒄𝒏, 𝒏𝒕𝒉 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓;  
𝑪, 𝑵𝒐. 𝒐𝒇 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓𝒔;  𝑴, 𝑵𝒐. 𝒐𝒇 𝒌𝒆𝒓𝒏𝒆𝒍𝒔 ; 𝑻, 𝑻𝒓𝒊𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓;  

𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒔𝒆𝒕 𝒐𝒇 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔 𝑷𝟏(𝒊) =
𝟏

𝑳
, İ = 𝟏 … 𝑳 

𝐎𝐮𝐭𝐩𝐮𝐭: 𝐊𝐞𝐫𝐧𝐞𝐥 𝐰𝐞𝐢𝐠𝐡𝐭 𝐯𝐞𝐜𝐭𝐨𝐫 𝒘𝒕,𝒏 𝒏𝒕𝒉 𝐜𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐞𝐫 𝐨𝐟 𝐭𝐫𝐢𝐚𝐥 𝒕; 
𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 𝐥𝐚𝐛𝐞𝐥𝐬 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐯𝐢𝐝𝐞𝐨𝐬 𝐜𝐨𝐦𝐩𝐮𝐭𝐞𝐝 𝐛𝐚𝐬𝐞𝐝 𝐨𝐧 

𝐬𝐢𝐠𝐧(∑ 𝒘𝒕,𝒏=𝟏:𝑲,𝒄𝒕,𝒏=𝟏:𝑪

𝑻

𝒕=𝟏

) 

𝒇𝒐𝒓 𝒕 = 𝟏, … , 𝑻 𝒅𝒐 
      𝑺𝒆𝒍𝒆𝒄𝒕 𝒏 𝒗𝒊𝒅𝒆𝒐𝒔 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝒔𝒆𝒕 𝒐𝒇 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔 𝑷𝒕 
      𝐟𝐨𝐫 𝒎 = 𝟏, … , 𝑴 𝒅𝒐  
          𝑻𝒓𝒂𝒊𝒏 𝒆𝒂𝒄𝒉 𝒘𝒆𝒂𝒌 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒖𝒔𝒊𝒏𝒈 𝑲𝒎 
         𝑪𝒐𝒎𝒑𝒖𝒕𝒆 𝒕𝒉𝒆 𝒆𝒓𝒓𝒐𝒓 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝑷𝒕: 

          𝒆𝒕= ∑ 𝑷𝒕(𝒊)(𝒄𝒕,𝒎(𝒙𝒊) ≠ 𝒚𝒊)

𝑳

𝒊=𝟏

 

      𝐞𝐧𝐝 𝐟𝐨𝐫 
𝑺𝒆𝒍𝒆𝒄𝒕 𝒕𝒉𝒆 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒕𝒉𝒂𝒕 𝒈𝒊𝒗𝒆𝒔 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒆𝒓𝒓𝒐𝒓  𝒆𝒕  
𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒆𝒓𝒓𝒐𝒓𝒔 𝒐𝒇 𝒂𝒍𝒍 𝒕𝒓𝒊𝒂𝒍𝒔: 
      𝒆𝒕=𝒎𝒊𝒏 𝒆𝒕,𝒎 
  𝑼𝒑𝒅𝒂𝒕𝒆 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝒐𝒇 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓𝒔: 

𝒘𝒕 = 𝒍𝒏
𝟏 − 𝒘𝒕

𝒘𝒕

 

𝐔𝐩𝐝𝐚𝐭𝐞 𝑷𝒕+𝟏(𝐢): 

      𝑷𝒕+𝟏(𝐢) = 𝑷𝒕(𝒊) × {
𝒆−𝒘𝒕 , 𝒊𝒇 𝒄𝒕(𝒙𝒊) = 𝒚𝒊)
𝒆 𝒘𝒕 , 𝒊𝒇 𝒄𝒕(𝒙𝒊) ≠ 𝒚𝒊) 

 

𝐞𝐧𝐝 𝐟𝐨𝐫 
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TABLE I CLASSIFICATION ACCURACIES FOR JPL DATASET 

Features 
Kernel Types (%) 

JPL-Int DC-Int H-Int Gaussian 

HOF 70.7 74.4 66 71.8 

Log-C 72.9 84.5 75.4 74.3 

Cuboid 70.8 75.6 73.6 65.0 

HOF & Cuboid 84.2 83.2 78.2 73.8 

HOF&Log-C&Cuboid 82.7 84.6 78.9 75 

TABLE II CLASSIFICATION ACCURACIES FOR DOGCENTRIC DATASET 

Features 
Kernel Types (%) 

DC-Int H-Int Gaussian 

HOF 42.0 43.6 29.2 

Log-C 43.1 46.5 29.9 

Cuboid 56.8 57.6 55.5 

HOF & Cuboid 59.6 60.8 58.7 

HOF&Log-C&Cuboid 62.2 62.3 56.6 

TABLE III ACCURACY RESULTS ON JPL AND DOGCENTRIC DATASETS 

 Accuracy (%) 

Approaches DogC dataset JPL dataset 

Ryoo et al. [15] 60.5 84.4 

Abebe et al. (RMF features) [3]  61.0 86.0 
SimpleMKL (2 Features) 64.9 86.1 
SimpleMKL (3 Features) 64.8 85.7 

Boosted MKL (2 Features) 62.9 82.7 

Boosted MKL (3 Features) 64.2 87.4 

Confusion matrices in Fig. 1a to Fig. 1c demonstrate that 
different features complement each other since each one is 
useful for distinct set of activities. When analysed 
individually, they are good (have higher than or equal to 80% 
accuracy) for recognition of the following activities 
respectively for HOF, Log-C and Cuboid: {hug, wave, point, 
punch}, {shake, wave, point, punch}, {point, punch, throw} 

 
a) HOF 

 
b) Log–C 

 
c) Cuboid 

 
d) Multi-channel HOF & Cuboid  

 
e) SimpleMKL HOF & Cuboid  f) Boosted MKL HOF & Cuboid 

 
g) Multi-channel HOF & Log–C & Cuboid h) SimpleMKL HOF & Log–C & Cuboid 

 
i) Boosted MKL HOF & Log–C & Cuboid 

Fig. 1 The confusion matrices of the base and combined features using DC-Int kernel on JPL dataset, SimpleMKL and Boosted MKL. 
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and the union of all the sets gives: {hug, wave, point, punch, 
throw, shake}. Each feature has a specific activity (shown in 
bold letters) for which the other features are not effective and 
the union covers all the activities except pet. On the other 
hand, they perform poorly (have lower than 80% accuracy) 
for the following activities, respectively: {shake, pet, throw}, 
{hug, pet, throw}, {shake, hug, pet, wave} and their 
intersection gives: {pet}. There is no activity for which all 
features perform poorly with the exception of the pet activity, 
which gets confused with the hug activity. The overall poor 
performance on the pet may stem from its resemblance with 
the hug activity in the videos since the onset of hug involve 
ego-motion (shaking side to side) similar to the pet. Such a 
resemblance is challenging to the classifier and reduces the 
overall performance of pet activity’s recognition rate. 
Consequently, when two features (HOF and Cuboid) are 
combined, there is an observed increase in accuracy values 
(Fig. 1d to Fig. 1f). Results for other two-feature 
combinations are not provided for brevity. As expected, 
combining all three features results in the best performing 
case (Fig. 1g to Fig. 1i). 

Table III shows that use of MKL and Boosted MKL to 
combine features and multiple kernels improves the results on 
both datasets compared to the conventional methods. 
SimpleMKL gives the best results when all the methods are 
restricted to use two features. Boosted MKL performance 
increases when all features are used. An analysis for the 
robustness of the feature combination methods could be done 
in terms of the standard deviation of the accuracy for each 
individual activity (diagonal elements of the confusion 
matrix). A lower standard deviation indicates that the method 
generalizes for a variety of activities and does not favour 
specific activities. Standard deviations for the methods HOF, 
Log-C and Cuboid when all features are used individually are 
15.15, 10.65 and 22.57, respectively (average 16.12), 
indicating that Log-C generalizes for a wider range of 
activities. When all three methods are used, multi-channel 
kernels, SimpleMKL and Boosted MKL have standard 
deviations of 12.46, 19.00 and 9.26, respectively. Indicating 
that the Boosted MKL becomes expert for a variety of 
activities by selecting effective kernel combinations to 
represent different activities and is the most robust method. 
SimpleMKL results in higher standard deviation than average 
standard deviation of individual features indicating that it 
inclines to select kernels favouring some activities. 

Boosted MKL can exploit three features rather than two 
features whereas SimpleMKL gives similar results for both 
feature sets. MKL and Boosted MKL demonstrate that the 
feature and kernel selection could be handled in a data-driven 
way at the training stage eliminating the need for a 
complicated analysis of performance of individual features 
and kernel types such as provided in Table I and II. 

It has to be noted that in all these cases, the performance 
could be improved by taking temporal relationships in the 
video into account (such as structure match proposed in [1]) 
in the post-processing phase. However, as our aim is to 
analyse the effects of feature and kernel selection and their 
combination, we leave such extensions as future work. 

V. CONCLUSIONS 

We proposed a novel framework based on data-driven 

selection and weighting of complementary features using 

MKL and Boosted MKL for first-person activity recognition 

domain. This framework currently uses HOF, Log-C and 

Cuboids as features and allows the integration of other video-

based features as well as features extracted from other 

modalities in a dynamic and adaptive way. Data-driven 

properties of this framework facilitate selection of the 

complementary features and kernels automatically during 

training instead of relying on fixed and static weights. In the 

future, other features such as virtual inertial data, audio 

features and multi-dimensional motion features could be 

integrated into the framework. 

VI. REFERENCES 

[1]  M. S. Ryoo and L. Matthies, “First-person activity recognition: What 
are they doing to me?,” in IEEE Conference on Computer Vision and 
Pattern Recognition, 2013.  

[2]  Y. Iwashita, A. Takamine, R. Kurazume and M. S. Ryoo, “First-Person 
Animal Activity Recognition,” in Int. Conf. Pattern Recognition 
(ICPR), 2014.  

[3]  G. Abebe, A. Cavallaro and X. Parra, “Robust multi-dimensional 
motion features for first-person vision activity recognition,” Computer 
Vision and Image Understanding, vol. 149, pp. 229-248, 2016.  

[4]  I. Gori, J. K. Aggarwal, L. Matthies and M. S. Ryoo, “ Multitype 
Activity Recognition in Robot-Centric Scenarios,” IEEE Robotics and 
Automation Letters, vol. 1, no. 1, pp. 593-600, 2016.  

[5] P. Natarajan, S. Wu, S. Vitaladevuni, X. Zhuang, S. Tsakalidis, U. 
Park, R. Prasad and P. Natarajan, “Multimodal feature fusion for robust 
event detection in web videos,” in Computer Vision and Pattern 
Recognition (CVPR), 2012.  

[6]  M. Varma and B. R. Babu, “More Generality in Efficient Multiple 
Kernel Learning,” in Int. Conf. Machine Learning (ICML), 2009.  

[7] C. Beyan, F. Capozzi, C. Becchio and V. Murino, “Identification of 
Emergent Leaders in a Meeting Scenario Using Multiple Kernel 
Learning,” in 2nd Workshop on Advancements in Social Signal 
Processing for Multimodal Interaction, 2016.  

[8]  S. Song, N. M. Cheung, V. Chandrasekhar, B. Mandal and J. Liri, 
“Egocentric activity recognition with multimodal fisher vector,” in 
IEEE Int. Conf. Acoustics, Speech and Signal Proc. (ICASSP), 2016.  

[9]  K. Guo, P. Ishwar and J. Konrad, “Action recognition from video using 
feature covariance matrices,” IEEE Transactions on Image Processing, 
vol. 22, no. 6, pp. 2479-2494, 2013.  

[10] P. Dollár, V. Rabaud, G. Cottrell and S. Belongie, “Behavior 
Recognition via Sparse Spatio-Temporal Features,” in IEEE Int. 
Workshop Perfor. Eval. Tracking and Surveillance (PETS), 2005.  

[11] V. Arsigny, P. Fillard , X. Pennec and N. Ayache, “Log-Euclidean 
metrics for fast and simple calculus on diffusion tensors,” Magnetic 
Resonance in Medicine, 2006.  

[12] I. Laptev, M. Marszalek, C. Schmid and B. Rozenfeld, “Learning 
realistic human actions from movies,” in Computer Vision and Pattern 
Recognition (CVPR), 2008.  

[13] A. Rakotomamonjy, F. R. Bach, S. Canu and Y. Grandvalet, 
“SimpleMKL,” Journal of Machine Learning Research, vol. 9, no. 
Nov, pp. 2491-2521, 2008.  

[14] H. Xia and S. C. Hoi, “MKBoost: A Framework Of Multiple Kernel 
Boosting,” IEEE Trans. Knowledge and Data Eng., vol. 25, 2013.  

[15] I. H. Jhuo and D. T. Lee, “Boosted multiple kernel learning for scene 
category recognition,” in Int. Conf. Pattern Recognition (ICPR), 2010.  

[16] F. Yang, H. Lu and M. H. Yang, “Robust Visual Tracking via Multiple 
Kernel Boosting with Affinity Constraints,” IEEE Trans. Circuits and 
Systems for Video Technology, vol. 24, no. 2, 2014. 

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1089


