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Abstract—There are many combined signal processing applications
such as the joint processing of EEG (Electroencephalogram) and MEG
(Magnetoencephalogram) data that can benefit from coupled CP (Canon-
ical Polyadic) tensor decompositions. The coupled CP decomposition
jointly decomposes tensors that have at least one factor matrix in
common. The C-SECSI (Coupled - Semi-Algebraic framework for ap-
proximate CP decomposition via SImultaneaous matrix diagonalization)
framework provides a semi-algebraic solution for the coupled CP decom-
position of noise corrupted low-rank tensors. The C-SECSI framework
efficiently computes the factor matrices even in ill-posed scenarios with
an adjustable complexity-accuracy trade-off. In this paper, we present
a reliability test for the C-SECSI framework that can improve the
model order estimation. Moreover, we analyse the photic driving effect
from simultaneously recorded EEG and MEG data using the C-SECSI
framework. The EEG and MEG data used in the analysis are obtained
by stimulating volunteers with flickering light at different frequencies
that are multiples of the individual alpha frequency of each volunteer.

I. INTRODUCTION

Tensor algebra is an efficient tool for data analysis because it
preserves the multidimensional data structure and provides improved
identifiability [1]. One of the most important tensor decomposition
is the CP decomposition since it decomposes a given tensor into the
minimum number of rank one components.

Recently, extensions to the coupled CP decomposition were pro-
posed. The coupled CP decomposition jointly decomposes tensors
that have at least one factor matrix in common. A C-SECSI frame-
work for the efficient computation of the coupled CP decomposition
was proposed in [2]. The C-SECSI framework is an extension of
the SECSI framework [3], [4] for the robust estimation of coupled
CP decompositions based on a truncated joint HOSVD (Higher Order
Singular Value Decomposition) followed by the whole set of possible
SMDs (Simultaneous Matrix Diagonalizations). Exploiting several
available estimates for each of the factor matrices, the SECSI frame-
work chooses one final estimate depending on different heuristics.
Therefore, it offers a complexity-accuracy trade-off. Moreover, the
C-SECSI framework is capable of jointly decomposing tensors with
different SNRs (Signal to Noise Rations), i.e., a normalization with
respect to the noise variance is not required [2].

The coupled CP tensor decomposition is suitable for several com-
bined signal processing applications that can benefit from coupled
tensor decompositions. Such applications include multirate sampling
for array signal processing [5], [6], data fusion with heterogeneous
data sets of multiple sources, i.e., social sites or review sites can be
processed jointly [7] and data clustering [8]. Moreover, biomedical
data analysis can benefit from coupled tensor decompositions because
often EEG and MEG recordings are performed simultaneously.

IPS (Intermittent Photic Stimulation) is a stimulation of the brain
by repetitive light flashes and it can induce the PD (Photic Driving)
effect. IPS can cause two phenomena, a frequency entrainment and a

resonance effect. Frequency entrainment is indicated by the synchro-
nization of the individual brain rhythm with the photic stimulation
frequency. The resonance effect is characterized by enlarged response
amplitudes for the photic stimulation with frequencies at or close to
the individual alpha frequency or half the individual alpha frequency
for our study.

The PD effect is widely used to assess effects of medicaments
and for diagnosis. Moreover, the PD effect is also used to study
several neurophysiological diseases like Alzheimers, schizophrenia,
and some forms of epilepsy. The studies of the PD effect provide
evidence for the frequency selectivity of the neural oscillator network
[9], [10]. The authors in [11] used the PD effect for the investigation
of neurophysiological mechanisms underlying autistic symptoms.
Moreover, in [12] the PD effect of epileptic patients was investigated
on the basis of simultaneously recorded EEG and MEG signals. In
[13], the first investigation of frequency entrainment using simultane-
ously recorded EEG and EMG signals during the IPS with frequency,
which was adopted to the individual alpha rhythm was performed.
Furthermore, in [14] a rod-driven PD effect was analysed and it
was shown that strong alpha resonance phenomena exist for rod-
input at stimulation frequencies around the individual alpha rhythm
(0.95fα − 1.10fα) and the first subharmonic (0.50fα − 0.55fα). In
[14] was shown that the rod-driven PD effect is limited by the flicker
fusion threshold.

We use the following notation. Scalars are denoted either as capital
or lower-case italic letters, A, a. Vectors and matrices, are denoted as
bold-face capital and lower-case letters, a,A, respectively. Tensors
are represented by bold-face calligraphic letters A. The operators
||.||F and ||.||H denote the Frobenius norm and the higher order norm,
respectively. Moreover, an n-mode product between a tensor A ∈
CI1×I2...×IN and a matrix B ∈ CJ×In is defined as A ×n B, for
n = 1, 2, . . . N [1]. A super-diagonal or identity N -way tensor of
dimensions R×R . . .×R is denoted as IN,R.

The rest of the paper is organized as follows. In Section II we
present the coupled CP decomposition and the proposed reliability
test based on the C-SECSI framework. In Section III the data model
and the construction of the tensors from the measurements data are
presented. The data tensors are then analysed using the C-SECSI
framework and the corresponding experimental verifications are pre-
sented in Section IV. Finally, in Section V we conclude this paper.

II. TENSOR ALGEBRA AND COUPLED CP DECOMPOSITION

If two tensors of order three, denoted by X (i) ∈
CM1×M

(i)
2 ×M(i)

3 , i = 1, 2 have the first factor matrix in common,
then they have a coupled CP decomposition defined as

X (1) = I3,R ×1 A×2 B
(1) ×3 C

(1)

X (2) = I3,R ×1 A×2 B
(2) ×3 C

(2),
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where, A ∈ CM1×R, B(i) ∈ CM
(i)
2 ×R and C(i) ∈ CM

(i)
3 ×R, i =

1, 2 are the factor matrices and R is the rank of the tensors. Moreover,
the truncated coupled HOSVD, in case of noise corrupted tensors,

X (1) = S [s],(1) ×1 U
[s]
1 ×2 U

[s],(1)
2 ×3 U

[s],(1)
3 (1)

X (2) = S [s],(2) ×1 U
[s]
1 ×2 U

[s],(2)
2 ×3 U

[s],(2)
3 , (2)

can be calculated jointly, for the common mode using the SVD
(Singular Value Decomposition),[

[X (1)](1) [X (2)](1)
]
= U

[s]
1 ·Σ

[s]
1 · V

[s]H
1 .

In (1) and (2), S [s],(1) and S [s],(2) ∈ CR×R×R are the
truncated core tensors and the loading matrices U

[s]
1 ∈ CM1×R,

U
[s],(i)
2 ∈ CM

(i)
2 ×R and U

[s],(i)
3 ∈ CM

(i)
3 ×R have unitary columns

and span the column space of the n-mode unfolding of X (i), for
n = 1, 2, 3 and i = 1, 2, respectively. Note that the matrices U

[s]
1

and A span the same column space of [X (1)](1). Due to the fact that
the tensors X (1) and X (2) have the factor matrix A in common,
the unitary matrix U

[s]
1 should be the same for both HOSVDs.

The C-SECSI framework provides an efficient computation of the
coupled CP decomposition using the joint HOSVD followed by the
whole set of possible SMDs [2]. Eight initial estimates of the factor
matrices are obtained, if the two tensors have one factor matrix in
common, as shown in [2]. All estimates of the factor matrices, as well
as an indication whether they are estimated from a transform matrix,
from the diagonalized tensor, estimated via LS (Least Squeares) or a
joint LS fit are summarized in Table I. From all these factor matrices

Transform Matrix Diagonalized Tensor LS joint LS

ÂI Ĉ
(i)
I B̂

(i)
I -

B̂
(i)
II Ĉ

(i)
II - ÂII

ÂIII B̂
(i)
III Ĉ

(i)
III -

Ĉ
(i)
IV B̂

(i)
IV - ÂIV

B̂
(i)
V ÂV Ĉ

(i)
V -

Ĉ
(i)
VI ÂVI B̂

(i)
VI -

B̂
(i)
V ÂVII Ĉ

(i)
VII -

Ĉ
(i)
VI ÂVIII B̂

(i)
VIII -

TABLE I: Estimates of the factor matrices obtained from the SMDs
for tensors X (i), i = 1, 2.

the most interesting one is the common factor matrix Â. It is easy
to notice that the first four estimates of the common factor matrix
(from ÂI to ÂIV) are obtained either from the transform matrices or
via joint LS fit. On the other hand, the last four estimates (from ÂV

to ÂVIII) are separately obtained from the diagonal elements of the
diagonalized tensor. Therefore, the first four solutions are coupled and
the last four are uncoupled. The final solution is then chosen for each
of the tensors separately based on the minimum reconstruction error.
We propose a reliability test that checks whether the same (coupled)
solution is chosen for both tensors. It is based on the error between
the final estimates of the coupled matrices, Â

(1)
and Â

(2)
,

eR =

∣∣∣∣∣∣Â(1) · P −A(2)
∣∣∣∣∣∣2

F∣∣∣∣A(2)
∣∣∣∣2

F

,

where P is a permutation matrix of size R × R that resolves the
permutation ambiguity of the CP decomposition. When the reliability
error, eR is very small than the reliability test has been passed. In
this case, the tensors rank have been correctly chosen and the tensors
are truly coupled in the common mode. If the error, eR is large the

reliability test has failed which indicates that either the tensors are
not coupled or the assumed tensor rank is not correct.
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Fig. 1: Reliability error as a function of the assumed rank R̂.

The reliability test can be used for model order estimation, i.e., rank
estimation for coupled tensors. Fig. 1 visualizes the typical reliability
error as a function of the assumed rank R̂. The curves presented in
Fig. 1 are results from Monte Carlo simulations with 2000 realization,
for real valued tensors of dimensions 7×7×7. Additionally, a white
Gaussian noise was added resulting in SNR = 80 dB (Signal to
Noise Ratio). The true tensor rank is indicated in the legend, whereas
the assumed rank R̂ was varied from one to seven. The reliability
error has a minimum when the assumed rank equals the exact tensor
rank. For the case when R1 = 2 and R2 = 3, i.e., when only two
components are common the reliability error has local minima for
both ranks. However, the reliability error will always have a minimum
for R = 1 due to the fact that for a tensor rank equal to one the
CP decomposition is equivalent to the HOSVD. Hence, only one
component is estimated based on the joint HOSVD and there is only
one estimate of the factor matrices. Therefore, for coupled tensors
the reliability error can be used for model order estimation.

Moreover, in [2] it was shown that the C-SECSI framework
unlike other ALS (Alternating Least Squares) algorithms can jointly
decompose coupled tensors even if they are affected by noise with
different variance. Normalization with respect to the noise variance
is not required when computing the coupled CP decomposition using
the C-SECSI framework.

III. DATA MODEL

Fig. 2: Visualisation of the EEG and MEG data tensors, T EEG and
T MEG, respectively.

For the analysis presented in this paper, measurement data were
used that were simultaneously recorded from 128 EEG channels and
102 MEG magnetometer channels at the Biomagnetic Center of the
University Hospital in Jena, Germany. The experiment was conducted
on twelve different volunteers, numbered 1 to 12 in this paper. In the
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first step their individual alpha rhythm was determined during 60
seconds of resting MEG. The individual alpha frequencies, fα were
calculated by means of the averaged Fourier Transform (FT) from the
occipital MEG channels. To investigate the synchronization effect of
the alpha rhythm twenty different stimulation frequencies were used,
from 0.40fα to 2.30fα with a step size of 0.05fα around fα and
irregularly placed otherwise, called condition 1 to 20 in a sequel.

In addition to the usual preprocessing, a complex Morlet wavelet
decomposition was used to obtain an estimate of the time-frequency
distribution of the EEG and MEG signals for each channel and
condition. The averaged wavelet coefficients for each of the good
EEG and MEG channels were arranged as frontal slices in the third
order tensor as depicted in Fig. 2. Resulting in a different tensor with
dimensions frequency×time×channel for each condition, measure-
ment and volunteer. Moreover, the frequency and the time dimension
corresponds to the discretized values resulting directly from the
wavelet transform. The frequency dimension contains two hundred
discrete frequency values from 3 Hz until 20 Hz. The time dimension,
however, varies from around 5000 ms up to 20000 ms. Therefore,
there is a different number of discrete time values, depending on
the corresponding condition. The variation of the length of the time
dimension is due to the nature of the measurement, because each
condition represents a different stimulation frequency and, therefore
has a different periodicity in the time domain. Furthermore, the
channel dimension represents the number of good EEG and the
MEG channels, which also can vary from volunteer to volunteer and
condition. Good channels are the channels that do not contain artifacts
and were perfectly intact, meaning that the sensors corresponding to
those channels had perfect connection during the measurement.

IV. DATA ANALYSIS

The data analysis was jointly performed for the EEG and MEG
tensors based on the C-SECSI framework and for each of the
conditions, respectively. It was assumed that the frequency mode is
common for both the EEG and MEG tensor.
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Fig. 3: Time, frequency and channel signature for volunteer 5,
stimulation frequency of 4.28 Hz and tensor rank 1.

Before the computation of the coupled CP decomposition, each of
the tensors was normalized to a norm one according to

T N,EEG =
T EEG

||T EEG||H
and T N,MEG =

T MEG

||T MEG||H
.
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Fig. 4: Time, frequency and channel signature for volunteer 5,
stimulation frequency of 4.28 Hz and tensor rank 2.
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Fig. 5: Time, frequency and channel signature for volunteer 5,
stimulation frequency of 4.28 Hz and tensor rank 3.

In [2] was shown that the C-SECSI framework does not require
normalization with respect to the noise variance. However, the
normalization to norm one tensors is necessary here due to the
different dimensionality of the EEG and MEG tensors values (micro
Volt and femto Tesla).

For each of the conditions, the coupled CP decomposition is
computed for an assumed rank, R̂ = 1, 2, 3. In the rest of this section,
we present some of the typical results that have been encountered
during the analysis. In the following figures we present the frequency,
time and channels signatures for volunteer 5. The frequency, time,
and channel signatures represent the corresponding factor matrices of
each tensor dimension.

In Fig. 3, Fig. 4 and Fig. 5 the frequency, time and a topographic
plot of the channel signature for the first condition are presented,
for R̂ = 1, R̂ = 2 and R̂ = 3, respectively. For an assumed rank
R̂ = 1, Fig. 3 shows that the dominant component for both the
EEG and MEG data is the component with a frequency equal to the
stimulation frequency. Note that by using the time component the
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FD effect can be analyzed further. The topographic visualization of
the channels signature depicts the occipital area where the PD effect
was expected to occur. Taking into account Fig. 4 and Fig. 5, and
comparing the resulting frequency signatures for EEG and MEG it is
obvious that they are not identical, although the frequency dimension
was taken as the common mode. Therefore, it can be concluded that
the reliability test has failed, indicating that the assumed rank is not
correct. Moreover, the reliability error for condition one is depicted
in Fig. 9 as a function of the assumed rank. The reliability error, as
introduced in Section II, indicates the error between the estimated
coupled matrices, up to a permutation and scaling ambiguity. For
this analysis we have assumed that the EEG and MEG tensors
have common frequency signatures. Therefore, the reliability error
is the error between the corresponding EEG and MEG frequency
signatures. For condition 1, based on the minimum of the reliability
error presented in Fig. 9, we see that the EEG and the MEG tensor
have only one common component. However, it cannot be excluded
that one of the tensors has a higher rank. Additionally, if we compare
each of the two components for the EEG and the MEG with one
another as depicted in Fig. 4, we see that the second component
is common for both tensors. Therefore, it can be concluded that for
condition one, the EEG data and the MEG data have ranks REEG = 2
and RMEG = 1, respectively. One of the components is common
and corresponds to the stimulation frequency, whereas the second
component for the EEG corresponds to the alpha frequency of the
volunteer 5.
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Fig. 6: Time, frequency and channel signature for volunteer 5,
stimulation frequency of 5.35 Hz and tensor rank 1.

Moreover, in Fig. 6, Fig. 7 and Fig. 8 the frequency, time and
channels signatures for subject 5, condition 3 corresponding to
stimulation frequency of 5.53 Hz are presented. The three figures
depict different assumed ranks, R̂ = 1, 2, 3. The reliability error for
condition 3 is also depicted in Fig. 9. For condition 3, both the EEG
and the MEG tensor have two components with a common frequency
signature. The two components correspond to the stimulation and the
alpha frequency, respectively.

In Fig. 9, the reliability error for the above presented conditions,
condition 1 and condition 3 is visualized. The reliability test is a
powerful tool for model order estimation of coupled tensors. If both
tensors have exactly the same rank REEG = RMEG the C-SECSI
framework together with the reliability test can reveal the exact
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Fig. 7: Time, frequency and channel signature for volunteer 5,
stimulation frequency of 5.35 Hz and tensor rank 2.
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Fig. 8: Time, frequency and channel signature for volunteer 5,
stimulation frequency of 5.35 Hz and tensor rank 3.

tensors rank and the underlying parallel components. Ambiguity
arises only in cases as in the previously presented condition 1.
Based on the reliability test alone we cannot determine whether
the two tensors have rank one, or if they have only one common
component and different (dominant) ranks. Therefore, for condition 1
additionally the reconstruction error has to be calculated.

Furthermore, the results obtained from the joint analysis of the
EEG and the MEG data for volunteer 5 and condition one to eleven
are summarized in Table II and Table III, respectively. Moreover, in
both tables the resulting frequencies for tensor rank equal to 1 and
2 are presented. The higher ranks are omitted, because in none of
the investigated cases the rank for both EEG and MEG was higher
than two. For most of the investigated cases, the EEG measurement
appeared to be rank two, whereas the MEG measurement was rank
one. If two components are present, usually one of the components
represents the stimulation frequency. On the other hand, the second
component is not necessarily common for the EEG and the MEG
measurements.
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Condition Stim. frequency Rank 1 Rank 2
comp.1 comp.2

1 4.28 Hz 4.367 Hz 4.367 Hz 10.64 Hz
2 4.82 Hz 4.808 Hz 4.831 Hz 9.804 Hz
3 5.35 Hz 10.53 Hz 5.291 Hz 10.53 Hz
4 5.89 Hz 5.814 Hz 4.926 Hz 5.814 Hz
5 6.42 Hz 6.369 Hz 4.739 Hz 6.369 Hz
6 7.49 Hz 7.353 Hz 4.762 Hz 7.353 Hz
7 8.56 Hz 8.621 Hz 8.621 Hz 10.2 Hz
8 9.63 Hz 9.615 Hz 9.524 Hz 10.99 Hz
9 10.17 Hz 10.1 Hz 10.1 Hz 10.1 Hz
10 10.7 Hz 10.42 Hz 10.2 Hz 10.31 Hz
11 11.24 Hz 10.64 Hz 9.804 Hz 10.64 Hz

TABLE II: Frequencies obtained from the joint analysis for the EEG
data, volunteer 5, condition one to eleven, and tensor rank one and
two.

Finally, the photic driving effect for both EEG and MEG, as
expected, was noticeable for the stimulation frequencies around
0.5fα and fα, i.e., condition 3 and 10. For the stimulation frequency
around 0.5fα there were two clear components corresponding to
0.5fα and fα. On the other hand, for stimulation frequencies around
fα there was only one component present in the EEG, corresponding
to fα and a second component around 0.5fα for the MEG.

Condition Stim. frequency Rank 1 Rank 2
comp.1 comp.2

1 4.28 Hz 4.367 Hz 4.367 Hz 4.367 Hz
2 4.82 Hz 4.808 Hz 4.808 Hz 9.804 Hz
3 5.35 Hz 10.53 Hz 5.291 Hz 10.53 Hz
4 5.89 Hz 5.814 Hz 4.902 Hz 5.848 Hz
5 6.42 Hz 6.369 Hz 4.739 Hz 6.369 Hz
6 7.49 Hz 7.353 Hz 4.762 Hz 7.353 Hz
7 8.56 Hz 8.621 Hz 4.878 Hz 8.621 Hz
8 9.63 Hz 9.615 Hz 4.854 Hz 9.615 Hz
9 10.17 Hz 10.1 Hz 4.831 Hz 10.1 Hz
10 10.7 Hz 10.42 Hz 4.651 Hz 10.53 Hz
11 11.24 Hz 10.64 Hz 4.762 Hz 10.64 Hz

TABLE III: Frequencies obtained from the joint analysis for the MEG
data, volunteer 5, condition one to eleven, and tensor rank one and
two.

V. CONCLUSION

Coupled SECSI (C-SECSI) provides a robust framework for the
efficient computation of the coupled CP tensor decomposition in
many challenging scenarios. For instance, the C-SECSI framework is
suitable for processing simultaneously obtained EEG and MEG mea-
surements. In this paper, we have presented the analysis of the photic
driving effect using the C-SECSI framework. We have shown that
based on a new reliability test, the model order estimation for coupled
tensors can be improved. Moreover, the EEG and MEG tensor have at
least one common frequency signature corresponding to the stimula-
tion frequency. However, they do not necessarily have the same (dom-
inant) tensor rank. To this end, tensors that have a common mode but
contain different parameters can be jointly decomposed using the C-
SECSI framework. Moreover, the robustness of the C-SECSI frame-
work allows the computation of the coupled CP decomposition of low
rank tensors that might even have different ranks. Using the new reli-
ability test, the rank of the coupled decomposition can be controlled.
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