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Abstract—Hyperspectral imaging has been rarely investigated
for honey analyses, on the contrary to the optical spectroscopy
which is widely investigated. The essential missing component to
kick start this research is a standard honey hyperspectral images,
called hypercubes, dataset. This paper proposes a systematic
procedure for the preparation of the first honey hypercube
dataset using hyperspectral imaging. Moreover, a scalable and
flexible dataset module is introduced to ease the interaction
between raw hypercube data and machine learning software.
The developed dataset greatly benefits researchers to progress on
the research of honey analysis including constituents prediction
and types classification using hyperspectral imaging and machine
learning.

I. INTRODUCTION

Honey is a big commodity in the market. It has a total
world production of 1.5 millions tonnes in 2004 and over
2 millions tonnes in 2013 [1]. The prediction of honey
quality becomes very important to governments, industries and
customers since some honey brands are far superior than the
others; like mānuka honey from New Zealand which contains
high antibacterial activity produced from New Zealand teatree
(Leptospermum scoparium) [2]. This New Zealand honey has
the highest price compared to the other honey brands [1].

Several approaches have been implemented for honey
analysis, mostly chemical and physical approaches. Optical
spectrum based honey analysis is an alternative way that
provides non-contact, non-invasive, fast, and fully automatic
methods. This research usually employs spectroscopy technol-
ogy for predicting honey types or constituent concentration
[3]. The other technology that has not been deeply explored
is hyperspectral imaging. Hyperspectral imaging combined
with machine learning methods is very promising for honey
analysis, however, there is almost no peer-reviewed research
article discussing this approach. Only one research article
reported using hyperspectral imaging for adulteration detection
by fructose-glucose mixture solutions [4].

Hyperspectral imaging is a study of objects in spectrum
fields creating fingerprints of particular objects [5], [6]. Unlike
the spectroscopy technology which captures spectral informa-
tion from one location, hyperpsectral imaging technology can
capture spectral information from a particular spatial region.
In consequence, a hyperspectral image or hypercube is a cube
with two spatial and spectral dimension.

Fig. 1. (a) Honey samples are placed in an oven for the liquefying process.
(b) Liquefied honey is placed in a glass container and its weight is measured.

This research proposes a standard dataset development for
honey hypercubes which is essential to support research uti-
lizing hyperspectral imaging and machine learning for honey
analysis. The analyses include constituents prediction (e.g.
Maltose, Sucrose, Fructose, Glucose, antioxidant compounds,
electrical conductivity prediction, etc.) and types classification
(e.g. authenticity or adulteration detection, brand identifica-
tion, geographical and botanical origin classification). The
standard development consists of three parts: sample prepa-
ration, hypercube acquisition and data handling. Based on
our exploration, this kind of standards is still not available
anywhere else. The developed database and the data handler
module will be available on the University of Auckland Server.

II. SAMPLE PREPARATION

Honey samples need to be prepared carefully under identical
conditions and treated in a similar way to ensure consistency of
their spectra in the data acquisition phase. The defined proce-
dure is considered to be simpler compared to the conventional
honey analysis using chemical and physical methods.

The honey samples are placed in closed containers and
heated in an oven overnight as depicted in Fig. 1.a. The
temperature of the oven is set to be 40◦C maximum to
dissolve crystals without changing its characteristic because
of overheating [7]. This treatment also helps to ease pouring
the honey into sample containers and getting a flat surface.
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Ideally, all samples need to be in a same thickness so that
the light travels through all samples equally. The most practical
way to get a reasonable same thickness is by measuring the
weight of the honey using a scale as depicted in Fig. 1.b.
The honey weight and the container shape determine the
thickness. For example, seven grams of honey in a cylindrical
container with 3.5 cm in diameter will have around 0.5 cm
thickness. Although, the density of each honey sample could
be different because of water content mainly [8], in a relatively
small amount of honey, the same weight produces reasonably
the same thickness. It can be seen from TABLE I where
the standard deviation of the thickness is very small: 0.0062
cm. The other important thing is to pour the honey carefully
into the container to minimize bubbles since they will cause
inconsistent information retrieval.

TABLE I
THICKNESS COMPARISON OF HONEY WITH DIFFERENT WATER

CONTENT ON 3.5-CM-DIAMETER CONTAINERS.

Water Content* Density* Volume per 7 g Thickness
(%) (g/cc) (cc) (cm)
13 1.4457 4.8419 0.5033

14 1.4404 4.8598 0.5051

15 1.435 4.8780 0.5070

16 1.4295 4.8968 0.5090

17 1.4237 4.9168 0.5110

18 1.4171 4.9397 0.5134

19 1.4101 4.9642 0.5160

20 1.4027 4.9904 0.5187

21 1.395 5.0179 0.5216

mean 4.9228 0.5117
std 0.0600 0.0062

*) The densities of honey on different water contents are
according to [9].

III. HYPERCUBE ACQUISITION

A systematic acquisition stage is needed to get accurate and
consistent data. The acquisition stage comprises three main
parts: a samples platform, a lighting system, and an imager. In
this research, the lighting system is configured to suit the most
common sensing modes: reflectance and transmittance, where
both are applicable since honey is neither 100% transparent
nor 100% opaque substance. In the reflectance sensing mode,
where the light source and the imager located on the same
side, the light reflects from the sample to the imager, while
in the transmittance sensing mode, where the light source
and the imager located on opposite sides of the sample,
the light travels through the sample to the imager [10]. The
illustrations of the reflectance and transmittance sensing modes
accompanied with their corresponding hypercubes in RGB
version are shown in Fig. 2.

The choice and configuration of the lighting system deter-
mines the quality of the hypercubes. As far as the lighting
source is concerned, halogen lamps are the most practical
choice for visible to near infrared spectral bands. Also, the
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Fig. 2. (a) The reflectance sensing mode. (b) The transmittance sensing mode.
(c) and (d) The corresponding RGB versions of hypercubes respectively.

halogen bulbs are arranged to produce maximum homoge-
neous illumination since the hyperspectral imager captures
spatial information.

IV. HYPERCUBE METADATA

Metadata is needed to give information about honey char-
acteristics for each hypercube. The metadata will be provided
in a separate file. To map the information to corresponding
hypercubes, a primary key is required in the metadata. The
best practice primary key is a combination of the filename
and its corresponding position since one hypercube file can
possibly contain more than one sample as shown in Fig. 3.a.
The corresponding metadata is shown in Fig. 3.b where each
row represents a particular honey characteristic for a specific
position in the hypercube file.

V. DATA HANDLING

A data handler is needed to process and manipulate the
acquired hypercubes for further processing. Two main tasks
need to be considered. The first task concerns the hypercube
database in the server-side, where the hypercubes are collected
and grouped together in a server; it enables remote access by
many researchers. The second task concerns constructing mod-
ule in the client sides to process the hypercubes conforming
individual needs.
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Fig. 3. (a) A hypercube contains more than one sample. Each sample is
segmented as a region which has specific information in the metadata file. (b)
the corresponding metadata.
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Fig. 4. The honey hypercube dataset module.

The hypercube database could be structured in a simple way.
A collection of hypercubes is placed on a server grouped by
folders where a metadata file is provided in each folder.

A new honey hypercube dataset module is developed to
process the hypercubes from the database into ready-to-
use data for other machine learning software. The module
is constructed based on skdata (scikit-data) [11] written in
the Python programming language. A brief overview of the
module is shown in Fig. 4 where there are three core python
files (dataset.py, view.py and main.py) to handle
hypercubes.

The dataset.py contains a class which make connec-
tion to the hypercube database for downloading and basic
processing. The basic processing includes segmentation and

calibration. The segmentation methods are used to design how
regions of interest are segmented. For example, in Fig. 3.a,
three regions containing 3 × 3 grids are defined on the
hypercube. Calibration methods are used to correct anomalies
of the segmented hypercubes caused by temperature, spatial
heterogeneity and other unknown factors. The dataset.py
also contains a rule to define an individual spectrum. For
example in Fig. 3.a, each small rectangular block is extracted
into one spectrum, so that nine spectra can be extracted from
each sample. Researchers can define how the hypercubes
will be segmented and calibrated according to their specific
problems or personal preferences.

The view.py contains a class executing preprocessing,
feature extraction and generating training-testing sets. The
preprocessing methods are intended to enhance the spatial-
spectral data without changing its original space. Common
preprocessing methods for spectral analysis are Multplicative
Scatter Correction (MSC) and its variants [12], Standard
Normal Variate (SNV) and De-Trending (DT) [13]. Feature
extraction methods are used to form the spatial-spectral data to
emphasis its characteristics for better prediction of the targeted
classes. It is common to change the original space to get
better features. The examples of feature extraction methods are
derivative signals, spectral averaging, etc. It is also possible
to define feature selection methods in the feature extraction
code section where the algorithms choose some most im-
portant original bands or features. The examples of feature
selection methods are entropy-based method (info gain) [14],
correlation-based method [15], etc. The researchers can freely
establish preprocessing and feature extraction methods ac-
cording to their particular problems. After the final features
are formed, the training and testing sets can be generated
automatically according to a particular validation strategy. The
common validation strategies are the percent split (holdout
method) and cross-validation [16], [17]. The data structure of
the training and testing sets is defined according to skdata
which is a Split object containing pairs of train and test
variables. The train and test are Task objects which are
classified as vector classification containing a x variable as
features and a y variable as targeted classes. For example,
Validation.splits[0].train.x means to access the
training set in the first fold which is a 2D-matrix (data ×
features) and Validation.splits[0].train.y means
to get the corresponding targeted classes which can be integers,
vectors or string labels.

The main.py is a command-line interface (CLI) entry
point which can instantly be used to download, extract and
preview databases through a terminal or console.

The honey hypercube dataset module is organized as in
Fig. 5 containing the three core python files and a library
folder (libs). In the library folder, prefix sg_*, cl_*, pp_*
and fe_* followed by method names represent segmentation,
calibration, preprocessing and feature extraction respectively.
Each python file in the library folder has a standard run
function with predefined input and output variables. The
segmentation method can only be executed once but the

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 505



libs/
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Fig. 5. The structure of the honey hypercube dataset module.

others (calibration, preprocessing and feature extraction) can
be executed more than once sequentially. This is very useful
because, for example, in the preprocessing step; SNV is
usually followed by DT.

The highlights of the developed module are listed below:
• Scalability: segmentation, calibration, preprocessing and

feature extraction methods can be add dynamically.
• Flexibility: it handles data from selected hypercubes and

defines targeted classes through a filter mechanism.
• Buffer mode: for a limited storage computer by down-

loading hypercubes data per allocated memory.
• Visualization functions: Plotting of wavelength and inten-

sity, 2D and 3D scatter graphs.
• Timer function: execution times calculation for each

method.
• SHA-1 checksum: it keeps originality and avoid process-

ing of corrupted files. SHA-1 is a standard secure hash
algorithm defined by the National Institute of Standards
and Technology (NIST) [18].

VI. HYPERCUBES COLLECTION AND SIMULATION

In the preliminary development, 32 honey samples with
various types obtained from five brands (ApiHealth, Arataki
Honey, Honeyland, Mossop’s Honey and Pure New Zealand
Honey) in the market are collected. For each sample, seven
grams of honey is placed in a circular lime glass container
with 3.5 cm in diameter prior the data acquisition. The
imager is from Surface Optic Corporation with code name
SOC710-VP which is capable to capture 128 bands from 400-
1,000 nm with ± 4.9 nm increment and produce 520 ×
696 pixels spatial resolution with 12-bit data per pixel. One
pixel in the hypercube is equal to 1 mm2 in the real spatial
resolution. Honey hypercudes are acquired using the imager
illuminated by a homogeneous halogen lighting system. To
capture variability of the samples, the hypercubes are obtained
in six batches resulting 192 reflectance and 192 transmittance
hypercubes in the database. The number of samples is planned
to be growing from time to time.

A simulation is conducted to test the proposed honey
hypercube dataset module in a local network. A local server
is created using an Apache Web Server included in the
XAMPP package [19]. The hypercubes are placed in folders
as depicted in Fig. 6. A metadata file is placed in each folder
to give information about corresponding hypercube files. In

xampp/

htdocs/

honey/

AratakiDB/
2016-12-13-16hr58min_I-19.936ms.cube
2016-12-13-16hr58min_I-19.936ms.hdr

metadata.csv

MossopDB/
2016-12-13-16hr50min_I-19.936ms.cube
2016-12-13-16hr50min_I-19.936ms.hdr

metadata.csv

ApiHealthDB/

HoneylandDB/

PureNZDB/

Fig. 6. A simple hypercube database in the server side. Each hypercube data
(*.cube) is accompanied with a header file (*.hdr).

this paper, Arataki samples are used as an example to show the
visualization functions for honey botanical origin classification
purposes. The plot of wavelength and intensity can be depicted
as in Fig. 7. The figure shows a potential segregation among
the honey types. The clover honey is significantly different
from mānuka honey and each mānuka variants has some
differentiation visually. The module can also produce a two-
dimensional scatter plot by inputing two selected bands as in
Fig. 8. In addition, particular groups can be made like in Fig. 9
where the focus is to see the difference between clover and
mānuka honey. The module is also able to plot an interactive
3D scatter as in Fig. 10 by inputing three selected bands. The
targeted classes will follow filtering and grouping mechanisms.
There are five classes in Fig. 7, 8 and 10 and two classes in
Fig. 9 (the variants of mānuka are grouped together).

VII. CONCLUSIONS

In this research, the framework of the first standard honey
hypercube dataset is proposed. The standard dataset is very
essential for supporting the continuity of honey analysis based
on hyperspectral imaging and machine learning. The sample
preparation procedure and development of the acquisition
stage have been discussed and explained in order to get
accurate and consistent data. The proposed honey hypercube
dataset module is important to progress in segmentation, cal-
ibration, preprocessing and feature extraction methods, which
can be used along with the machine learning software. The
proposed module is scalable, flexible and embedded with
handy features including buffer mode, timer and visualization
functions. The simulation shows that the honey hypercube
database can be developed and used effectively.
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