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Abstract—Bird activity detection is the task of determining if
a bird sound is present in a given audio recording. This paper
describes a bird activity detector which utilises a support vector
machine (SVM) with a dynamic kernel. Dynamic kernels are used
to process sets of feature vectors having different cardinalities.
Probabilistic sequence kernel (PSK) is one such dynamic kernel.
The PSK converts a set of feature vectors from a recording
into a fixed-length vector. We propose to use a variant of PSK
in this work. Before computing the fixed-length vector, cepstral
mean and variance normalisation and short-time Gaussianization
is performed on the feature vectors. This reduces environment
mismatch between different recordings. Additionally, we also
demonstrate a simple procedure to speed up the proposed method
by reducing the size of fixed-length vector. A speedup of almost
70% is observed, with a very small drop in accuracy. The
proposed method is also compared with a random forest classifier
and is shown to outperform it.

I. INTRODUCTION
Automated acoustic monitoring of habitats is an important

and useful tool for biodiversity analysis [1]. Several studies
[2], [3] have shown the effectiveness of this method, when
compared to traditional field studies, which are human and cost
intensive. Because many birds vocalize, acoustic monitoring is
particularly suited to study avian diversity in a given region.
Given that it is relatively easy to collect audio recordings from
the field, one must first determine which of these recordings
contain a bird sound. This was the task addressed in the
recently concluded bird activity detection (BAD) challenge [4],
[5]. The challenge provided two datasets with audio recordings
labeled as either bird (having a bird sound) and non-bird
(having no bird sound.) This paper describes an efficient bird
activity detector, which uses support vector machines (SVMs)
using dynamic kernels.

Extracting conventional acoustic features like Mel frequency
cepstral coefficients (MFCCs) from a given audio recording
results in a set of feature vectors. For a given sampling rate and
frame rate, the cardinality of the set depends on the duration
of the audio recording. To measure the similarity between two
sets of feature vectors having different cardinalities, SVMs
make use of dynamic kernels [6]. In this work, we propose a
variant of the probabilistic sequence kernel (PSK) [7] for bird
activity detection.

Short time features like MFCCs are prone to channel and
environment variations, and this can result in degradation
of classifier performance. In the context of an archive of
bird audio recordings, the recordings could be made using
various recording devices (including automatic bioacoustic

recorders, hand-held microphones, even smartphones.) The
acoustic environment where these recordings are made could
also be significantly different, with background sounds like
humans talking, passing vehicles, wind, rain, other animals
etc. To overcome some of these variations, our BAD frame-
work utilises techniques which have been used in automatic
speaker recognition. These include cepstral mean and variance
normalisation, and short-time Gaussianization.

We also demonstrate a simple procedure to speed up the
proposed bird activity detector. The BAD algorithm must be
able to process large collections of audio recordings in a
reasonable amount of time. The proposed method achieves
a speedup of almost 70% with a very small drop in accuracy.

II. FEATURE EXTRACTION

In our proposed bird activity detector, MFCCs along with
delta and delta-delta coefficients are used as the feature repre-
sentation. Since acoustic characteristics can vary significantly
in an archive of bioacoustic recordings, the difference between
training and testing conditions has to be compensated. We
use post-processing in the form of cepstral mean and vari-
ance normalization (CMVN) and short-time Gaussianization to
mitigate the affects of mismatched conditions to some extent.
Both these techniques are briefly discussed in this section.

A. Cepstral mean and variance normalization (CMVN)

The presence of channel effects due to different recording
devices/conditions and convolutive noise lead to changes in the
mean and variance of feature representations. These feature
representations can be made robust to changes in training
and testing conditions by making them zero-mean and unit-
variance. The convolutive channel effects become additive in
the cepstral domain. Assuming that the channel effects are
stationary for a recording, the effects of the channel can be
mitigated by subtracting the mean and dividing by the standard
deviation [8], [9]. Here, the mean and variance are determined
individually for each recording, and each feature dimension is
considered independently.

A classical utterance based cepstral mean and variance
normalization [9] is utilised. Let X = {x1,x2, .....,xN} be
the set of feature vectors from an audio recording having N
frames and each xn is a 39-dimensional MFCC vector. xn(i)
represents the i-th dimension for the n-th feature vector. To
apply CMVN, first the mean (µ) and the variance (σ2) are
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calculated across i-th dimension for all N frames, then this is
processed using equation 1

x̂n(i) =
xn(i)− µ(i)

σ(i)
. (1)

Here, x̂n(i) is the normalized value of the i-th dimension
of the MFCC vector of the n-th frame. This is applied on all
dimensions of the feature vectors in X . Figure 1(b) shows the
histogram of the first MFCC coefficient after applying CMVN.

B. Short-time Gaussianization

The distribution of feature vectors is also changed by the
presence of channel effects and noise. Mapping this feature to
an ideal distribution, like the standard normal distribution, also
can provide robustness against channel effects and additive
noise [10]. In short-time Gaussianization (STG), each feature
dimension is treated independently and is warped so that its
cumulative distribution function (CDF) matches the standard
normal distribution N(0, 1) [10]. Let X be a set of features
to be warped. Then STG is applied on X as

X̂ = T (X ). (2)

Here T represents a non-linear transform implementing
short-time Gaussianization. A moving window of size N is
used and CDF matching is applied on the central frame. The
values in the moving window are sorted in descending order,
and if r is the rank of the central frame, its CDF value can
be approximated as [10]

φ =
(r − 1/2)

N
. (3)

The warped value, x̂ of any feature, x should satisfy the
equation

φ =

∫ x̂

−∞
f(z)dz, (4)

where f(z) is the PDF of the standard normal distribution.
Figure 1(c) shows the histogram of the first MFCC coefficient
after applying short-term Gaussianization.

III. PROBABILISTIC SEQUENCE KERNEL FOR BAD

Support vector machines using dynamic kernels deal with
different cardinalities of feature sets by either matching local
feature vectors in the set or by mapping a feature set on to
a fixed-length representation [6]. One such dynamic kernel is
the probabilistic sequence kernel (PSK) and has been utilised
for speaker verification [7]. PSK was also recently utilised in
bird species identification [11].

In the context of speaker verification, PSK utilizes the
universal background model (UBM)-Gaussian mixture model
(GMM) framework. For the task of BAD, we use a variant of
PSK which utilises a single GMM instead of a UBM-GMM. A
GMM is built using the examples of bird class only. Suppose
X = {x1,x2, .....,xN} is a set of feature vectors. Then, the
probabilistic alignment vector, Ψ(xi), for feature vector xi is
given as Ψ(xi) = [γ1(xi), γ2(xi), .......γQ(xi)]

T . Here, Q is
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Fig. 1. Histogram of first MFCC coefficient extracted from a song recording
of Cassin’s Vireo (a) before pre-processing (b) after applying CMVN (c) after
applying CMVN and short-time Gaussianization.

the number of components in the GMM and γq(xi) represents
the probabilistic alignment of xi with the q-th component, and
is calculated as

γq(xi) =
wqN (xi|µq,Σq)∑Q
j=1 wjN (xi|µq,Σq)

. (5)

Here wq , µq and Σq represent weight, mean and covariance
of q-th component of the GMM.

The set, X , of feature vectors (and hence the audio record-
ing) is represented as a fixed-length vector ΦPSK(X ), defined
as

ΦPSK(X ) =
1

N

N∑
n=1

Ψ(xn). (6)

The length of ΦPSK(X ) is Q. The probabilistic sequence
kernel between two feature sets i.e Xa and Xb is defined using
equation 7

KPSK(Xa,Xb) = ΦPSK(Xa)TS−1ΦPSK(Xb). (7)

Here S is a correlation matrix defined as

S =
1

Z
RTR. (8)

R is a Z×Q matrix having rows which are the probabilistic
alignment vectors from the feature vectors of the training
set having Z training examples. Using ΦPSK vectors of bird
and non-bird recordings, an SVM learns support vectors to
discriminate between the two classes.

Since the GMM is built using only bird class, the respon-
sibility terms for some of the components are significantly
different for bird and non-bird recordings, providing distinc-
tion between ΦPSK representations of both the classes. Figure 2
shows the framework based on PSK for bird activity detection.
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Fig. 2. Proposed PSK based framework for BAD

IV. IMPROVING COMPUTATIONAL EFFICIENCY

In the proposed framework, as discussed in the previous
section, a GMM built using bird class examples is used for
calculating probabilistic alignment vectors. Audio recordings
labeled as bird may also contain other background sounds, in-
cluding silence regions. Hence, every component of the GMM
need not correspond to bird sounds. This observation can be
exploited to bring down the size of the probabilistic alignment
vectors and hence the size of ΦPSK vectors. Instead of using all
Q components for calculating probabilistic alignment vectors,
only P components can be used, such that P < Q.

The computational complexity of the proposed framework is
directly dependent on mapping a recording to a ΦPSK vector.
Hence, this complexity is also dependent on calculating re-
sponsibility terms for each component of the GMM. By using
only P relevant components, the computational complexity
required to calculate the ΦPSK vector for any feature set is
O(N × P ) instead of O(N × Q). Here N is the number of
feature vectors in any feature set and P < Q.

The classification accuracy can still be maintained if these
P components correspond to the bird-calls and not to the
background. The procedure to choose these P components
is described in algorithm 1. For a given GMM, this is a one-
time process. Since responsibility terms are calculated only
for segmented bird sounds not the background, it is most
likely that the top components chosen using algorithm 1 will
correspond to bird sounds.

In this work, we have considered K = 15 randomly
chosen recordings to choose P components. One can use the
entire training set to choose P components. However, our
experimentation showed that the same results are obtained
even for a small number of recordings from the training set.

Algorithm 1: Proposed procedure for choosing relevant P
components for calculating ΦPSK vectors
• Randomly choose K audio recordings which are

labeled as bird activity from the training dataset (K
is much smaller than the number of training
examples).

• Segment bird calls from each recording using
weighted inverse spectral flatness (ISF) and
thresholding as described in [12].

• Calculate probabilistic alignment vectors for each
segment.

• Choose highest 30 responsibility terms along with
their index from each vector.

• Calculate frequency of each component index
pooled together in the previous step.

• Choose P component indexes having maximum
frequencies to compute ΦPSK.

The bar plots of ΦPSK representations for a bird and a
non-bird recording calculated using P = 8 and P = 16
GMM components (estimated using algorithm 1) instead of
Q = 128 components are depicted in Figure 3 and Figure 4.
By analyzing these figures, it is clear that the magnitude of
responsibility terms of some of the components for bird and
non-bird recordings are different. This difference in responsi-
bility terms leads to the distinction between two classes.

1 2 3 4 5 6 7 8

GMM Component

0

0.1

0.2

0.3

0.4

R
es

po
ns

ib
ili

ty

(a)

1 2 3 4 5 6 7 8

GMM Component

0

0.1

0.2

0.3

0.4

R
es

po
ns

ib
ili

ty

(b)

Fig. 3. Bar plots of ΦPSK representations calculated using P = 8 for (a) a
bird recording (b) a non-bird recording.

V. EXPERIMENTS AND RESULTS

A. Datasets Used

The proposed BAD framework using all Q GMM com-
ponents and using only the top P components are evaluated
on data that was released as part of the BAD challenge [4].
The data is from two sources: Freefield and Warblr. Freefield
recordings are collected by the Freesound project [13]. The
data consists of 1935 and 5755 recordings labeled as bird and
non-bird respectively. Warblr [14] is UK-based bird sound
crowd-sourcing research project. A subset of Warblr having
6045 bird and 1955 non-bird recordings is provided. Both
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Fig. 4. Bar plots of ΦPSK representations calculated using P = 16 for (a)
a bird recording (b) a non-bird recording.

datasets are collected in various environments and exhibits
different background sounds. Each audio recording is 10
seconds long and has a sampling rate of 44.1 kHz.

B. Experimental setup

To evaluate the generalization of the proposed BAD system,
training and testing is done on different datasets. In other
words, when Warblr is used for training, Freefield is used
as test, and vice versa. For feature extraction, a frame size
of 20 ms with no overlap is used. This is done to reduce
the number of frames for processing. The GMM is built
using 100 randomly chosen examples from the bird class. The
number of components in the GMM, Q is set to 128. These
parameters are determined by utilising a small test set of 2000
examples. Varying these parameters did not result in major
performance gains (see Table I). In general, the more the data
used for building the GMM, the better is the estimate of the
probabilistic alignment vectors. Moreover, the non-application
of CMVN and STG resulted in a performance degradation
ranging from 5 to 11%.

The SVM is trained using ΦPSK vectors derived from 200
examples each of the bird and the non-bird classes. LIBSVM
[15] is used for SVM implementation and Voicebox [16]
is used for MFCC extraction. Accuracy i.e. the percentage
of correctly classified examples is used as the performance
metric.

The performance of the proposed BAD system is compared
with a random forest classifier with 128 trees. Random forest
based approach is a baseline method considered in the BAD
challenge. In this work, the random forest is trained on ΦPSK
vectors derived from the GMM. The accuracy of this method
is compared with that of the proposed approach in Table II.

The results demonstrate that the proposed PSK-based BAD
system discriminates recordings having bird sounds with those
that do not. Since the GMM is built using only recordings
labeled as bird, examples from this class align better with
most of the components.

TABLE I
PERFORMANCE OF THE PROPOSED BAD FRAMEWORK ON 2000 TEST
EXAMPLES FOR DIFFERENT GMM COMPONENTS (Q) AND DIFFERENT

NUMBER OF FILES FOR BUILDING THE GMM.

Training
dataset

Testing
dataset

Files used for
building GMM

Components
Used (Q)

Accuracy
(%)

Warblr Freefield

100
64 71.95

128 73.9
256 73.87

500
64 73.3

128 73.6
256 73.96

1000
64 74.01

128 74.25
256 74.75

Freefield Warblr

100
64 75.4

128 76.1
256 75.9

500
64 73.15

128 75.1
256 75.4

1000
64 74.3

128 75.2
256 74.89

TABLE II
COMPARISON OF PERFORMANCES OF THE PROPOSED FRAMEWORK WITH

RANDOM FOREST CLASSIFIER AND SVM WITH LINEAR KERNEL

Training Testing
Random
Forest

(%)

SVM with
proposed

PSK
with Q

components
(%)

Proposed
PSK

with P=32
components

(%)

Warblr Freefield 79.35 85.01 84.85
Freefield Warblr 72.14 77.15 76.9

C. Using top P components

By choosing the top P scoring components, the computation
requirement of GMM-based PSK is further decreased. The P
components having high probability of corresponding to bird
calls are chosen using algorithm 1. We use different values for
P to find a configuration which provides comparable accuracy
but takes significantly less computational time as compared to
using all the Q GMM components.

To evaluate the performance and computation time trade-
off, we use Warblr dataset for training and Freefield dataset
for testing. Figure 5 depicts the accuracy and running time
comparison for different values of P i.e. 8, 16, 32 and 64. The
running time for both is measured on a computer having Intel
i7 5th generation quad core processor and 16 GB of RAM.
The running time shown in Figure 5 is the average time taken
for ten runs on the complete test dataset.

From Figure 5, it is evident that the classification accuracies
for P = 32, 64 and 128 components are essentially equivalent.
However, it is clear that the average running times for 32
GMM components is 1593 seconds, for 64 components is
2836 seconds and for 128 components is 5694 seconds.
Therefore, the average running time using 32 components is
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Fig. 5. Comparison of classification accuracies and running time (seconds)
for different number of chosen components, P

almost 43% less than 64 components and 70% less than the
128 components. Hence, using only P components improves
running time significantly, with a small drop in accuracy for
lower values of P . This is useful in the context of searching
through a large volume of recordings.

VI. CONCLUSION

This paper described a bird activity detector using a variant
of the probabilistic sequence kernel. By utilising probabilis-
tic alignment vectors derived from recordings that contain
birdcalls and from ones which do not, the SVM is able to
distinguish the two classes effectively. Moreover, by using
only a subset of the components of the probabilistic alignment
vector, considerable speedup was obtained, with a very small
drop in accuracy. The method illustrates how converting a set
of feature vectors into a fixed-length representation can be
effective in discriminating classes. The method can also be
applied to discriminate recordings of different durations.

Although this paper utilised only the probabilistic sequence
kernel, several other dynamic kernels can be utilised [11].
Future work will investigate the use of these kernels.
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