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Abstract—In this work, we propose a method for finding an
optimal, non-uniform, sampling scheme for a general class of
signals in which the signal measurements may be non-linear
functions of the parameters to be estimated. Formulated as a
convex optimization problem reminiscent of the sensor selection
problem, the method determines an optimal sampling scheme
given a suitable estimation bound on the parameters of interest.
The formulation also allows for putting emphasis on a particular
set of parameters of interest by scaling the optimization problem
in such a way that the bound to be minimized becomes more
sensitive to these parameters. For the case of imprecise a priori
knowledge of these parameters, we present a framework for
customizing the sampling scheme to take such uncertainty into
account. Numerical examples illustrate the efficiency of the
proposed scheme.

I. INTRODUCTION

Determining how to suitably sample a signal is an important
problem in many signal processing applications, such as sensor
positioning and selection in network monitoring [1], [2], local-
ization and tracking [3], and selecting the temporal sampling
[4]. As an example, in nuclear magnetic resonance (NMR)
spectroscopy, one is typically interested in sampling a multi-
dimensional field containing partly known signal components.
For high-dimensional data, it quickly becomes infeasible to
sample the field uniformly, especially when examining living
cells, which have limited lifetimes. This has caused an interest
in formulating sampling schemes for NMR signals, allowing
for notable improvements [4]–[8]. For example, a recent study
of 4-D NMR measurements that would have taken about
2.5 years to perform using regular sampling was shown to be
possible to construct in merely 90 hours using a non-uniform
sampling scheme [9].

Among the developed schemes are some exploiting a com-
pressive sensing framework, allowing for an accurate signal
reconstruction using fewer samples than the Nyquist-Shannon
sampling theorem necessitates for uniformly sampled signals
(see, e.g., [7], [8]). However, the developed schemes typically
do not optimize the sampling scheme with respect to the ex-
pected signals, even though these are often fairly well known.
In this work, we strive to exploit this knowledge in order
to design a sampling scheme that would allow for a optimal
estimation accuracy given the assumed prior knowledge.

Lately, for the related problem of optimal sensor placement,
there has been several methods proposed in which the com-
binatorial problem of selecting a subset of sensors is relaxed
using convex optimization. In [10], the authors consider the

case when signal measurements are linear in the unknown
parameters and propose a sensor selection scheme based
on solving a convex optimization problem inspired by the
determinant criterion (D-optimality) of experimental design
[11]. This work was then developed in [12], [13], wherein the
authors consider non-linear measurement equations, as well
as replacing D-optimality with the average variance criterion
(A-optimality) as a performance measure. Specifically, as A-
optimality can be interpreted as the sum of the diagonal
elements of the Cramér-Rao lower bound (CRLB) for the
signal parameters, the problem was formulated as to minimize
the number of required sensors subject to an upper bound on
the resulting diagonal sum of the CRLB. Assuming that the
bound is tight, the method thus finds a sparse set of sensors,
i.e., activates a few out of a set of candidate sensors, while
keeping the variance of the estimated parameters below a fixed
level.

In this paper, we expand on this idea, proposing a method
for finding an optimal sampling scheme in order to estimate the
parameters for signal models where, in general, the signal mea-
surements are non-linear functions of the unknown parameters.
By taking the available prior information of the signal into
consideration, we propose a sampling scheme that is found by
solving a convex optimization problem that guarantees a bound
on the worst case CRLB. The sampling pattern is selected
via a variable vector, corresponding to the available sample
positions, which is penalized using the `1-norm, resulting in a
sampling scheme that is limited in the number of samples.
In general, when estimating a set of parameters, it might
be that the scale of the parameters, as well as the accuracy
with which they can be estimated, are significantly different.
Also, some of the unknown parameters might be of greater
interest than the others; again, using NMR as an example,
the signal decay is often of more interest than the signal
frequencies, the latter often being relatively well known for
a given substance, whereas the former measures the sought
interactions. We here propose to use a weighting scheme in
order to allow for a relative balancing of the variances of the
different parameters, allowing for designing sampling schemes
specifically tailored to yield good estimation accuracy for the
parameters of interest.

In some applications, one may assume some prior knowl-
edge of the signal of interest, such as, for example, knowledge
of the subspace where the signal parameters are to be found.
Again using NMR as an illustrative example, the signals of
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interest consist of decaying modes, being well modeled as a
sum of damped sinusoids. These modes are, as noted, often
well known in frequency, at least within some reasonably
well defined frequency band, whereas the uncertainty of, and
the interest in, the signal decays is often more significant.
Typically, the problem of interest is thus to specify the
damping parameter as accurately as possible using as few
samples as possible. To allow for this case, we herein propose
using a gridding of the parameter space in order to guarantee
performance within certain bounds, allowing for uncertainty
in the parameters.

II. PROBLEM STATEMENT AND PROPOSED SAMPLING
SCHEME

Consider a measured signal y(tn), defined on a D-
dimensional space with N potential D-dimensional sampling
points, tn, n = 1, 2, . . . , N . It is assumed that the probability
density function (pdf) of y(tn), here denoted with p (y(tn);θ),
is parametrized by the parameter vector θ and that two samples
y(tn) and y(tm) are independent if tn 6= tm. The Fisher
information matrix (FIM) for sample y(tn) may then be
defined as

F(tn;θ) = E
{
∇θ log (p(y(tn);θ))∇Hθ log (p(y(tn);θ))

}
(1)

where E {·} ,∇θ, and (·)H denote the statistical expectation,
the gradient with respect to θ, and the conjugate transpose,
respectively. The here proposed sampling scheme is designed
such that it is optimal in the sense of either minimizing the
CRLB of the parameters of interest, given that M of the N
potential uniform samples are used, or conversely, to minimize
the number of samples used given a desired upper bound on
the CRLB of the parameters. Note that, as the potential signal
samples are assumed to be independent, for any set of samples
indices Ω, it holds that ∑

n∈Ω

F(tn;θ) (2)

is the corresponding FIM using this sample scheme. Let the
N -dimensional vector w denote the possible sampling points
in the D-dimensional sampling space, such that if the n:th
index, wn, is set to one, this sampling point is used, whereas
if it is set to zero, it is not. Reminiscent of the case of optimal
sensor selection, the resulting sampling design problem may
then be formulated as (see also [12])

minimize
w

‖w‖1

subject to tr

( N∑
n=1

wnF(tn;θ)

)−1 ≤ λ
wn ∈ {0, 1} , n = 1, 2, . . . , N

(3)

where λ > 0 and tr(·) denotes the trace operator. The use of
the trace constraint corresponds to the so-called A-optimality
criterion from design of experiments [11]. As the trace of the
inverse FIM corresponds to the sum of the CRLB of the signal

parameters in θ, the parameter λ constitutes an upper bound on
the sum of the lower bounds of the variances of the elements
of θ. The sampling design scheme (3) is not convex due to
the restriction that wn, for n = 1, . . . , N , is defined over
a non-convex set. A convex approximation to this problem
may be found by relaxing the binary constraint and instead
allowing wn to take any value in the range [0, 1] (see, e.g.,
[13]), resulting in

minimize
w

‖w‖1

subject to tr

( N∑
n=1

wnF(tn;θ)

)−1 ≤ λ
wn ∈ [0, 1] , n = 1, 2, . . . , N

(4)

Given a solution ŵ to (4), we define the FIM for the corre-
sponding sampling pattern as

I(ŵ;θ) =
∑
`∈Ω

F(t`;θ), Ω = {` | ŵ` > ξ} (5)

where ξ ≥ 0 is a threshold determining whether a sample
weight ŵ` should be rounded toward one or zero, i.e., whether
the sampling point should be included or not. This formulation
allows for the minimization of the sample size, given an
upper bound on the sum of the CRLBs of the parameters,
or, conversely, to find the sample scheme yielding the lowest
sum of the CRLBs given an upper bound on the number of
samples used.

The sampling design in (4) does not allow for the case
when one is primarily interested in a subset of the available
parameters, as, for example, is the case in NMR. Neither does
the formulation take into account that the different parameters
might have significantly different variances. For example, for
a sum of damped sinusoids, the trace constraint in (4) will
clearly be dominated by the CRLB for the amplitudes, as
these are orders of magnitude larger than those of the frequen-
cies, and the optimization will therefore put an emphasis on
minimizing the CRLB of the amplitude parameter. In order
to allow for sampling schemes that put an emphasis on a
selection of the parameters of interest, we propose to introduce
a weighting matrix, A(θ), acting upon the FIM. Specifically,
instead of minimizing the cost function using the FIM, we
instead introduce a weighted FIM in the optimization. Let

F̃(tn;θ) = A(θ)F(tn;θ)AT (θ) (6)

This weighting corresponds to performing a linear transfor-
mation of the parameters and letting the constraint be formed
on the sum of the CRLBs for the transformed parameters
θ̃ = A(θ)θ. For example, the weighting matrix A(θ) may
be formed as a diagonal loading, where the diagonal elements
are set to be the roots of the CRLB corresponding to the
case when all N samples are used. Furthermore, one may
not only be interested in designing a sampling scheme for a
single parameter vector θ, but rather for a set of parameter
vectors. For example, consider the case when the parameters
in θ are only partly known, such that one may assume that θ
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Fig. 1. The resulting sample scheme for two different values of β plotted
against the real part of the signal. The upper most figure details the sampling
scheme for β = 1

10
and the bottom figure the sampling scheme for β = 1

20
.

instead lies in a set of possible parameters, Θ. In this case,
one may, e.g., treat some of the parameters as known, whereas
others are only partly known, within some set of uncertainty.
To allow for this, as well as taking the weighting into account,
we generalize (4) such that the sampling scheme is designed
as

minimize
w

‖w‖1

subject to tr

( N∑
n=1

wnF̃(tn;θ)

)−1 ≤ λ , ∀θ ∈ Θ

w` ∈ [0, 1] , n = 1, 2, . . . , N

(7)

To illustrate the proposed sampling scheme, we consider the
NMR signal model, as noted being formed as a sum of damped
sinusoids (for ease of notation, we focus on the 1-D case), such
that

y(tn) =
K∑
k=1

αk exp{2iπfktn − βktn + iφk}+ ε(tn) (8)

for n = 1, . . . , N , where αk, fk, βk, and φk are the frequency,
damping, and phase of the k:th component, respectively, and
where ε is an additive noise term, here assumed to be well
modeled as a white Gaussian noise, with N being the number
of samples, and tn the time at sample n. For simplicity, we
consider uniformly sampled candidate sampling times, tn.
As an illustration, Figure 1 shows an example of sampling
schemes found by solving (7) for two different levels of decay
for a single damped sinusoid such that β = 1/10 for the top
figure, and β = 1/20 for the bottom figure, but otherwise
identical signal parameters. In both cases, λ has been chosen
as to select M = 13 sample points out of N = 50 possible
candidates. As can be seen, the placing of the samples are
determined by the damping parameter. As may be expected,
for both values of β, some samples are placed in the beginning
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Fig. 2. Sum of CRLBs for the parameters, i.e., tr
(
I(ŵ;θ)−1

)
for the

sampling patterns given by the optimization problem and the best simulation,
respectively, for different number of sampling points.

of the signal, where the signal to noise ratio (SNR) is at its
maximum. To allow for an accurate estimation of the damping
constant, one can also note that a further set of samples are
selected later in the signal, with the more strongly decaying
signal selecting them earlier than the less damped version,
agreeing with the intuition that the more rapidly decaying
signal contains less information at later sampling times.

III. NUMERICAL RESULTS

A. Optimization vs simulation

In Figure 2, we motivate that solving (7) is indeed a
reasonable approach to determine optimal sampling patterns.
The figure shows the obtained sum of the CRLBs for the
parameters, i.e., tr

(
I(ŵ;θ)−1

)
, where the sampling pattern is

obtained by solving (7) for the case of K = 1 using the model
(8), for a singleton set Θ and identity weighting A(θ) = I.
This is done for varying values of λ such that the number
of samples used vary between M = 5 and M = 25. As a
comparison, for each sample size M , we carry out 106 Monte
Carlo simulations, in which we randomly decide on which M
sampling points to use. We then compute which of these 106

sampling patterns that results in the lowest sum of CRLBs. As
can be seen from the figure, the randomized approach achieves
better results for small sample sizes, this as the simulations
then become an exhaustive search, i.e., the simulations will
with high likelihood find the solution to (3). However, as the
sample size increases, so does the number of possible sampling
patterns, which is

(
N
M

)
. As can be seen from the figure, the

sampling scheme determined by (7) is then able to achieve an
optimal performance as the sample size increases.

B. Weighting

In Figures 3 and 4, we proceed to examine the
effect of using the weighted FIM in (7). This is
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Fig. 3. Obtained RMSE for the frequencies, when using the sampling patterns
for the weighted and non-weighted cases, respectively.

done for a signal consisting of two damped sinusoids
with parameters (α1, f1, β1, ϕ1) = (1, 0.2, 1/12, 0.5) and
(α2, f2, β2, ϕ2) = (1, 0.65, 1/20, π/5). The noise variance
was σ2 = 0.01 and N = 50. Assuming that we are interested
only in the frequencies f1, f2, and the damping factors β1, β2,
but not in the amplitudes or the phases, the weighting matrix
A(θ) should be designed to put emphasis on the former
parameters. To construct A(θ), which for simplicity is chosen
to be a diagonal matrix, we first compute the full FIM
corresponding to the sample pattern where all N samples are
used. The diagonal elements of A(θ) corresponding to the
amplitudes and phases are then chosen as the roots of the
corresponding diagonal elements of the inverse full FIM, while
the diagonal elements corresponding to the frequencies and the
dampings are set to unity. Thus, the sought sampling pattern
will be designed to increase the accuracy for the frequency and
damping parameters at the expense of the amplitude and phase
parameters. The resulting root CRLB, as a function of the
number of samples used, for the frequencies f1 and f2 and the
dampings β1 and β2 are shown in Figures 3 and 4, respectively.
The root CRLB for the frequencies f1 and f2 is here defined as
the root of the sum the individual CRLBs, and correspondingly
for the dampings, β1 and β2. For comparison, the figures also
present the root CRLBs corresponding to the optimal sampling
patterns obtained for the case when no weighting is applied
to the FIM, i.e., with A(θ) being the identity matrix. As can
be seen, the weighting scheme results in sampling patterns
that decreases the CRLB for the parameters of interest, in this
case the frequencies and dampings. Also plotted is the ob-
tained root mean squared error (RMSE) for the frequency and
damping parameters, respectively, obtained when estimating
these parameters using non-linear least squares (NLS) applied
to simulated signals. The RMSE is here defined as the root
of the sum of the individual MSEs for the frequencies and
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Fig. 4. Obtained RMSE for the damping, when using the sampling patterns
for the weighted and non-weighted cases, respectively.

dampings, respectively. As can be seen, the RMSE coincides
with the root CRLB, implying that the bound is tight.

C. Gridding

Figures 5 and 6 show the effect of finding an optimal
sampling pattern for a set of parameters θ ∈ Θ when solving
(7). The results are obtained for a single decaying sinusoid.
Here, we let Θ = {θ`}L`=1 express uncertainty in only the
damping parameter β by fixing α, f , and ϕ and letting Θ
be a gridding over the damping parameter β, such that the
parameter vectors constituting Θ are θ` = (α, f, β`, ϕ)T

where

β` = βlower +
`− 1

L
∆β (9)

with ∆β denoting the grid spacing, in effect letting β reside
in the uncertainty interval

Jβ =

[
βlower, βlower +

L− 1

L
∆β

]
(10)

The parameters used are α = 1, ϕ = 0.5, σ2 = 0.1,
βlower = 0.1, ∆β = 0.022, and L = 10. Using this, we
solve (7) to get optimal sampling patterns as the number of
samples grows. To evaluate the performance of the obtained
sampling schemes, we then randomly sample the parameter
vectors θ where β is sampled uniformly on Jβ , i.e., on the
interval covered by the grid Θ, but not on the grid points
β`, ` = 0, 1, . . . , L − 1. We then estimate θ using NLS and
compute the RMSE for the parameters θ. The figures show
the obtained MSE using 5000 Monte Carlo simulations for the
frequency f and the damping β, respectively. Also presented
are the best and worst case root CRLBs found on the grid Θ for
each parameter. The obtained RMSE lies between the lowest
and highest on-grid root CRLB for both parameters and for
all considered sample sizes, suggesting that (7) indeed yields
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sampling schemes with a guaranteed worst case performance,
as well as a lower limit on the possible RMSE.
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