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Abstract—In this paper, automatic speaker verification using
normal and whispered speech is explored. Typically, for speaker
verification systems, varying vocal effort inputs during the testing
stage significantly degrades system performance. Solutions such
as feature mapping or addition of multi-style data during training
and enrollment stages have been proposed but do not show
similar advantages for the involved speaking styles. Herein, we
focus attention on the extraction of invariant speaker-dependent
information from normal and whispered speech, thus allowing
for improved multi vocal effort speaker verification. We base our
search on previously reported perceptual and acoustic insights
and propose variants of the mel-frequency cepstral coefficients
(MFCC). We show the complementarity of the proposed features
via three fusion schemes. Gains as high as 39% and 43% can be
achieved for normal and whispered speech, respectively, relative
to the existing systems based on conventional MFCC features.

Index Terms—Whispered speech, speaker verification, fusion,
i-vector extraction, MFCC.

I. INTRODUCTION

Over the years, whispered speech has been the subject of
different analyses ranging from perceptual to acoustic studies,
in order to explore possible everyday applications. For exam-
ple, perceptual studies have been conducted to characterize
major acoustic differences between whispered and normal
speech. Topics such as pitch perception and the correlation
between perceived pitch and formant location have been
studied, as well as the measurement of the formant shifts
towards higher frequencies. Moreover, perceptual studies have
suggested that whispered speech still conveys a significant
amount of speaker identity and gender information [1], [2].
Acoustic studies, on the other hand, have corroborated and
complemented perceptual findings. For instance, whispered
speech has a lower and flatter power spectral density [3], and
the duration of consonants in whispered speech are prolonged
by about 10% relative to normally-voiced speech and the
intensity of whispered consonants is lower by about 12 dB
[4]. The above-mentioned insights have been used by the
research community to tackle different challenges, such as
reconstruction of normal speech from whispers [5], speech
recognition [3], and speaker identification [6], [7], [8] with
whispered speech.
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Herein, special attention is given to whispered speech
speaker verification (SV) as it is commonly used in public
situations where a private or discrete information needs to
be exchanged (e.g., when providing a credit card number,
bank account number, or other personal information). Specif-
ically, we address the mismatch whispered speech speaker
verification problem, which is still an open issue specially
during testing stage when there is no whispered speech data
for training or to enroll target speakers [7], [8]. For instance,
accuracies as low as 20% have been reported for whispered-
speech speaker identification [7] in clean mismatch conditions.

In our previous research, different approaches were eval-
uated to tackle the mismatch problem including frequency
warping and alternate feature representations, fusion schemes
at frame and scoring level, and feature mapping [9], [10].
Other studies have proposed robust features such as modified
linear cepstral coefficients (LFCC) and feature mapping [11],
feature warping over Mel-frequency cepstral coefficients and
score combination at the frame level [6], model adaptation
schemes, and feature mapping from normal to whispered
speech to be used during map adaptation [8]. Results suggested
that there is invariant information between normal-voiced and
whispered speech, but classical feature extraction approaches
do not represent it in an effective manner to achieve reliable
performance in a SV task for both speaking styles. Here,
we propose the computation of innovative features aiming
at extracting invariant information embedded within both
speaking styles, by extracting variants of the MFCC. We
present evidence on how the proposed approaches can extract
complementary information to reduce the negative impact of
the train/test mismatch problem.

The remainder of this paper is organized as follows. Section
II presents background related to the SV problem. Section
III describes the feature extraction approaches. Section IV
describes databases used and discuses different approaches of
fusion schemes. Section V, presents the results and discussion.
Lastly, Section VI presents the conclusions.

II. AUTOMATIC SPEAKER VERIFICATION (SV)

Modern state-of-the-art speaker recognition systems are
based on identity vectors extraction (i-vectors) [12], a tech-
nique proposed to map large-dimensional input data to a fixed-
length low dimensional feature vector while retaining most
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relevant speaker information. The standard approach relies on
the use of a C-Component Gaussian mixture model (GMM)
trained as an universal background model (UBM) to parti-
tion the feature space and collect sufficient statistics. These
statistics are, in turn, used to estimate a transformation matrix
representing all variability in the space, the total variability
matrix (T matrix), which is later used to extract i-vectors from
speech recordings. In this approach, the number of components
in the UBM model (C) and the dimensionality of the T matrix
(D) need to be tuned. This procedure is complemented with
some post-processing techniques such as linear discriminant
analysis (LDA), whitening, and length normalization, which
are helpful to remove nuisance effects in the total variability
space. The interested reader is referred to [12], [13] for more
complete details.

Matching between a test utterance and a target speaker
can be done using either a fast scoring technique based on
cosine distance or on probabilistic linear discriminant analysis
(PLDA) [12], [14] based scoring. The PLDA model splits
the total data variability into within-individual and between-
individual variabilities, both residing in small-dimensional
subspaces. Originally introduced for face recognition, PLDA
has become a standard in speaker recognition, and details can
be found in [14]. Using φ to denote the i-vector extracted from
a given speech recording, in a verification scenario, there are
two possible hypotheses: 1) φtest and φenrol share the same
class, and 2) φtest and φenrol are from different classes. Lastly,
the corresponding score can be obtained by computing the
log-likelihood between the two hypotheses, which is given by
s = ln(P (φtest,φenrol))− ln(P (φtest)P (φenrol)); details can
be found in [14]. For the experiments herein, the open-source
Bob signal processing toolbox was used [15].

III. FEATURE EXTRACTION METHODS

The approach taken in this work is based on the computation
of features aiming at extracting invariant information embed-
ded within both speaking styles. First we use the standard
mel-frequency cepstral coefficients in order to characterize a
baseline system. Next, we complement this feature set with
variants of MFCC that are proposed based on insights obtained
from acoustic analyses.

A. Mel Frequency Cepstral Coefficients - MFCC

For the experiments herein, the MFCC were computed on
a per-window basis using a 25 ms window with 40% overlap,
the recordings were pre-emphasized using a first order finite
impulse response filter with constant a = 0.97. Thirteen
MFCC features, including the 0–th order cepstral coefficient
(log-energy) were computed using 27 triangular bandpass
filters spaced according to the mel scale. Delta (∆) and double
delta (∆∆) coefficients were appended to include dynamic or
transitional information. These features were computed using
an anti-symmetric Finite Impulse Response (FIR) filter of
length nine to avoid phase distortion of the temporal sequence.
After dropping frames where no vocal activity was detected,
cepstral mean and variance normalization was applied per
recording to remove linear channel effects. For all recordings
the sampling rate is 16kHz.

Fig. 1. Spectral envelope comparison between normal and whispered speech.

B. MFCC variants

According to perceptual and acoustic studies, two of the
most salient differences between normal and whispered speech
are related to the spectral envelope, i.e. i) whispered speech
has a lower and flatter power spectral density [3] and ii) the
formants shift towards higher frequencies [2], [16]. This last
observation is more noticeable for the first three formants
(F1, F2 and F3), where, F1 shifts can be up to 71% for
men and 52% for women; F2 shifts can be up to 24% for
men and 20% for women; and F3 shifts can be of 10% and
4.8%, respectively [16]. To illustrate this, Figure 1 depicts
the average power spectrum of amplitude-normalized and pre-
emphasized recordings from 36 speakers (male and female).
As can be seen most of the differences remain below 1.2 kHz.
For normal speech, most of the energy is concentrated below
1 kHz, whereas for whispered speech it is concentrated below
500 Hz, with frequency shifts in the spectral peaks and valleys
(F1 shifts are most prominent). Based on these insights, two
MFCC variants are proposed.

Based on the source-filter model for the process of human
speech generation, it is possible to split the speech signal
in two components, i) an excitation signal (known as the
residual) that can be visualized as the combination of two
different signal generators, one for voiced-speech and another
for voiceless (noise-like) speech, and ii) a transfer function
which models the vocal tract configuration and shapes the
spectral envelope of the resulting speech [17]. This is relevant
for whispered speech because by removing the influence of
the vocal tract, then differences related to the spectral envelope
are reduced. Furthermore, in the past, features extracted from
the residual have been shown to contain important speaker-
dependent information useful for speaker recognition tasks
[18]. In the case of whispered speech, unvoiced sounds have
been shown to remain unaffected [4], and also to contain im-
portant speaker-dependent information for speaker recognition
tasks using whispered speech [19], [20]. As such, it is expected
that features extracted from the residual signal will carry some
invariant speaker information, particularly from the unvoiced
segments. While it is not expected that the residual based
feature will perform accurately alone, as most of the speaker-
dependent information is typically embedded in spectral en-
velope associated to the vocal tract configuration, it should
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carry complementary information that can be fused with other
features [21], [22]. For our experiments, the standard MFCC
processing pipeline was computed over the residual signal. We
will refer to this new feature set as Residual Mel Frequency
Cepstral Coefficients (RMFCC). RMFCC, ∆ and ∆∆ are
concatenated, then used for i-vector computation.

In the past, for narrowband (NB) speech signals, residuals
were also explored for speaker verification of normal speech
(i.e., 8kHz sampling) [22]. In such case, the residual modelled
differences in excitation energy and periodicity information
amongst speakers. Here, residuals are explored for alternate
reasons, as there is no periodicity to be modelled with whis-
pered speech due to the lack of vocal fold vibrations. Our
hypothesis is that the resulting spectrally flat signal, even with
the harmonic structure for normal speech, has reduced differ-
ences when comparing the two speaking styles. Furthermore,
unvoiced sounds have more energy concentration at higher
frequencies [17] and consonants such as stops, fricatives and
affricates have more spectral similarities at frequencies higher
than 4 kHz [3]. As such, by analyzing residuals from wideband
(WB) speech, more information related to the unvoicedness
will be captured. Given the similarities between the two vocal
efforts for unvoiced speech segments, it is believed that this
information will contain useful speaker-dependent information
invariant across the two vocal efforts.

Typically, the use of NB signals for telephone based com-
munications has limited the analysis of speech signals for
feature extraction to the range of frequencies in 0.3 - 3.4 kHz.
With the use of emerging WB communications and advanced
digital signal processing technology in the telecommunications
infrastructure, this range has been expanded to 8 kHz [23].
This has motivated detailed analyses to explore the role and
relevance of different frequency subbands for speaker recog-
nition tasks. As an example, for NB speech signals in [24] it
was shown that the 1.5 - 3.4 kHz frequency sub-band contains
more discriminative information than the lower 0.3 - 1.5 kHz
frequency sub-band, except for nasals. For WB speech signals,
on the other hand, in [25] it was shown that the frequency sub-
band 4-8 kHz provides a performance similar to that obtained
with the frequency sub-band 0-4 kHz, thus suggesting the pres-
ence of relevant speaker-discriminative information beyond 4
kHz. In a different study, it was shown that for text-dependent
speaker identification, higher frequency channels were more
relevant for speaker recognition than those located at lower
frequencies [26]. It was reported that the lowest identification
rates were associated to channels containing information of
first and second formants, and that there was a high negative
impact in performance when removing channels containing
information from the frequency band between 5 kHz to 8
kHz [26]. Moreover, as seen from Fig. 1, the mismatch when
comparing the sub-band from 0 to approximately 1.2 kHz
is considerable, and in previous work it was shown that by
removing this specific sub-band [9] it was possible to improve
performance in the mismatch condition, but at the cost of
reduced performance in the matched scenario. By doing this,
we remove the sub-band that comprises mostly information
from F1, which studies have shown to be highly variable in
whispered speech mode, with shifts as high as 70% relative

Database
No. of speakers Recordings/speaker
Female Male Normal Whisper

TIMIT 192 438 10 –
wTIMIT 24 24 450 450
CHAINS 16 20 37 37

TABLE I
DETAILS OF THE THREE DATABASES USED IN THIS WORK

to normal speech. In addition to this, for WB speech signals
it is expected that most of the speaker specific information
relevant for speaker recognition tasks is preserved [26], [27],
[28], hence the performance in normal speech should not be
affected. This set is referred as Limited band Mel Frequency
Cepstral Coefficients (LMFCC). As before, LMFCC, ∆ and
∆∆ are computed, then used for i-vector computation.

IV. EXPERIMENTAL SETUP

A. Corpus description

In our experiments, three different databases were used, the
CHAINS (Characterizing Individual Speakers) speech corpus
[29], wTIMIT (whispered TIMIT) [30] and TIMIT databases
[31]. The CHAINS and wTIMIT databases contain normal and
whispered speech. Table I presents details about the number
of speakers and recordings per speaker.

Speakers were divided in two disjoint sets, one for devel-
opment (parameter estimation of GMM, T-matrix and PLDA)
and the other for enrollment and testing (target speakers).
Recordings from 462 speakers from TIMIT database and 14
speakers from wTIMIT were included in the development set,
where the subset of speakers from wTIMIT includes record-
ings from both normal and whispered speech as suggested in
[10]. Recordings from 100 speakers from the TIMIT database,
24 speakers from wTIMIT and 36 speakers from CHAINS, in
turn, were included in the target speakers set. Average duration
for all speech recordings is 4.5 seconds. It is important to
emphasize that these are rather short utterances with limited
phonetic variability thus making these experimental conditions
more challenging [32]. To characterize the baseline system,
we included only normal speech recordings from both the
development and target speakers sets. During enrollment, eight
recordings per speaker were used; for testing, however, we
used two recordings per speaker, and if there are whispered
speech recordings available, then two additional utterances
were included. When combining the three databases the total
number of target and non-target trials are 320 and 50880,
respectively, for normal speech, and for whispered speech 120
target and 19080 non-target trials.

B. Fusion strategies

Three fusion schemes were also investigated in this paper:
i) score-level fusion, ii) i-vector concatenation and iii) Frame

level fusion. For score-level fusion, separate data (different
from background and target speakers) is needed to train the
fusion system and the systems to be fused (i.e., systems trained
on MFCC, RMFCC or LMFCC feature sets) are evaluated
using an unseen evaluation set. A logistic regression function
is used as a fusion system and maps evaluation scores into a
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final decision using the Bosaris toolkit [33]. To estimate the
parameters of this fusion system, 68 speakers from the TIMIT
database and 10 from the wTIMIT database were included
to create a new evaluation list. For enrollment, a configuration
similar to the one used for the original evaluation list was used,
including eight additional recordings of whispered speech for
the 10 speakers of wTIMIT. For the new evaluation list, in
order to have approximately the same amount of target and
impostor scores from each speaking style, two recordings of
normal speech and 15 recordings of whispered speech per
speaker were used.

With i-vector fusion, in turn, i-vectors extracted from
MFCC, RMFCC or LMFCC features are concatenated into
a final feature vector prior to post-processing, i.e., prior to
LDA, whitening, and length normalization. This strategy has
shown to be effective in various scenarios such as language
recognition and short utterance speaker recognition [34], [35]
to combine strengths of i-vectors estimated from different
feature representations. This approach does not require training
of an additional system thus represents an advantage over score
level fusion. Lastly, with frame level fusion, MFCC, RMFCC
or LMFCC features (including first and second order deriva-
tives) are concatenated into a final feature vector. Principal
component analysis is then performed to remove redundant
features and only the top components are kept as features, for
combinations 99% of cumulative variance was retained. These
top components are then used for i-vector computation.

V. RESULTS AND DISCUSSION

In previous work, we have shown the benefits of adding
whispered speech during parameter estimation, even if the
set of speakers with whispered speech recordings represents a
small percentage of the overall training set [10]. Nevertheless,
even if whispered speech data is available for parameter
estimation, the mismatch problem can still be present as
changes in the vocal effort can be viewed as “within-speaker”
variation, and such variation is not well represented in the
enrollment samples from target speakers [10]. To set the
baseline of our experiments, we compared the performance
of the three feature representations by training independent
SV systems and adding whispered speech during T matrix
estimation. Results are presented in Table II. As can be seen,
by using the standard MFCC, there is a gap in performance
between normal and whispered speech higher than 17%. Next,
by using the RMFCC feature set, it is clear that by removing
the information related to the spectral envelope important
speaker specific information is removed. Systems based only
on this feature set are not expected to perform at the same
level as standard MFCCs, but may provide complementary
information. And finally, LMFCC, are shown to perform
equally well to MFCCs for normal speech, but to improve
whispered speech accuracy by about 4%.

Table III, on the other hand, reports the results from
the three fusion strategies. Best results are highlighted per
speaking style. Results confirm that the three feature sets
extract complementary and speaker-dependent discriminative
information. It is necessary to highlight that the gains attained

SV system Normal Whispered
MFCC 3.13 20.83
RMFCC 6.70 22.95
LMFCC 3.13 16.67

TABLE II
EQUAL ERROR RATE (EER %) COMPARISON FOR DIFFERENT FEATURE

SETS AND THE FUSION SYSTEMS. LMFCC: LIMITED BAND MEL

CEPSTRAL COEFFICIENTS, RMFCC - RESIDUAL MEL CEPSTRAL

COEFFICIENTS. FOR THESE EXPERIMENTS C = 256 AND T = 400

Fusion S1 S2 S3 S4
level N W N W N W N W
Score 2.81 15.63 2.81 15.83 2.50 11.67 2.50 13.49
i-vector 2.19 16.46 2.81 15.70 2.19 13.26 2.19 14.71
Frame 2.19 16.84 2.34 16.33 1.95 15.40 1.88 15.63

TABLE III
EER (%) COMPARISON FOR FUSION SYSTEMS AT THREE DIFFERENT

LEVELS. N: TESTING WITH NORMAL SPEECH, W: TESTING WITH

WHISPERED SPEECH, S1: MFCC+RMFCC, S2: MFCC + LMFCC, S3:
LMFCC + RMFCC, S4: MFCC+RMFCC+LMFCC. FOR ALL CASES

C = 256 AND T = 400

at this point, where only a small set of speakers in the back-
ground set have whispered speech recordings, shows that it is
possible to extract invariant information from both speaking
styles. Table III also shows four different combinations of
feature sets, for example, S1 represents the fusion at different
levels of MFCC and RMFCC feature representation. As can
be seen, fusion of conventional MFCC with either of the pro-
posed feature sets showed improvements for both normal and
whispered speech (i.e., sets S1 and S2), relative to the results
reported only for MFCC in Table II. Notwithstanding, fusion
of only the proposed MFCC variants (i.e., set S3) resulted in
further gains, particularly for whispered speech, with score-
level fusion achieving the lowest EER for whispered speaking
mode. Lastly, fusion of all features (i.e., set S4), while it did
not improve the performance for whispered speech, it did
slightly lower the EER for normal speech when using the
frame-level fusion strategy. These results reinforce the idea
that the proposed variants of MFCC extract more relevant
speaker-dependent and complementary information which is
invariant for both speaking styles than the standard MFCC.

Relative EER improvements, when comparing S3 with
the standard MFCC based system, are 20% and 43% for
normal and whispered speech, respectively, with score-level
fusion. With i-vector concatenation, in turn, 30% and 36%
gains for normal and whispered speech are seen, respectively.
Lastly, frame-level fusion resulted in relative improvements
of 37% for normal speech and 26% for whispered speech. By
comparing the fusion schemes, it can be seen the one with
best performance for whispered speech is score-level fusion,
while the best for normal speech is frame-level fusion. i-vector
concatenation, on the other hand, seems to be the scheme
showing a tradeoff between performance and computational
burden, as additional fusion scheme training is not needed,
as was the case with score level fusion. This opens the
possibility to implement dedicated systems for each speaking
style, as different strategies showed benefits for different vocal
efforts. We explored this alternative, and implemented a simple
normal/whisper speech classification system using RMFCC i-
vectors, which were the best at this task with a classification
error = 0.45%. The resulting EER were 2.12% and 11.67%
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for normal and whispered speech in the SV task, respectively.
Misclassification when selecting the best system, seems to
affect more normal speech than whispered speech, however,
error rates are inline with best results attained.

VI. CONCLUSIONS

This paper has addressed the issue of speaker verification
(SV) based on whispered speech. Two variants of the conven-
tional MFCC features were implemented in order to reduce
error rates for SV with whispered speech while maintaining
the performance with normal speech. The complementarity of
features was then explored by means of three fusion schemes.
According to our results, fusion schemes have different ad-
vantages depending on the testing speaking style, while for
normal speech fusion at frame level seems to be optimal, for
whispered speech it is better to train separate systems and
fuse them at the score level. Dedicated systems seems to be
an option to take the best of each configuration, however high
performance must be guaranteed in the normal/whisper speech
classification stage.

Regarding whispered speech speaker verification perfor-
mance, when there is no whispered speech data available to
enroll target speakers, whispered speech can induce severe
detrimental effects on a standard MFCC/i-vector/PLDA based
speaker recognition system. In fact, even if whispered speech
data is available for parameter estimation, the mismatch prob-
lem can still be present as changes in the vocal effort can
be viewed as “within-speaker” variation, and such variation
is not well represented in the enrollment samples from target
speakers. Proposed schemes can partially address this problem
by reducing the within-speaker variation, but it is necessary to
continue exploring alternate feature representations to extract
more relevant speaker-dependent invariant information across
vocal efforts. In the future, feature selection methods can be
used in order to reduce computational burden.
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