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Abstract—A novel source model is developed to improve the
separation performance of independent vector analysis (IVA) for
speech mixtures. The source model of IVA generally assumes
the same amount of statistical dependency on each pair of
frequency bins, which is not effective for speech signals with
strong correlations among neighboring frequency bins. In the
proposed model, the set of all frequency bins is divided into
frequency bands, and the statistical dependency is assumed only
within each band to better represent speech signals. In addition,
each source prior is switched depending on the source states,
active or inactive, since intermittent silent periods have totally
different priors from those of speech periods. The optimization of
the model is based on an EM algorithm, in which the IVA filters,
states of sources, and permutation alignments between each pair
of bands are jointly optimized. The experimental results show
the effectiveness of the proposed model.

Index Terms—Blind source separation, independent vector
analysis (IVA), independent component analysis (ICA)

I. INTRODUCTION

Blind source separation (BSS) is a key technique for
recovering unknown source signals from only their mix-
tures, and has been applied to, for instance, preprocessing
for speech recognition tasks for multiple speakers. Among
frequency-domain approaches for BSS, independent vector
analysis (IVA [1]–[3]), multivariate extension of frequency-
domain independent component analysis (FD-ICA [4], [5]), is
appealing since it is not affected by the permutation ambiguity
owing to its modeling of each source. IVA generally assumes
a spherical multivariate distribution as a source prior, i.e.,
the same amount of statistical dependency on each pair of
frequency bins. As reported in a variety of researches [6]–
[8], however, this assumption is not effective for speech signals
with stronger correlations among neighboring frequency bins
than between distant bins.

As a generalization of IVA to improve dependency models
of sources, a family of non-spherical distributions is introduced
as a source prior for IVA [6], [7], [9]. These distributions
have strong correlations within neighboring frequency bins,
but weak ones between distant bins. In the presence of speech,
the priors in [6], [7], [9] fit the distributions of speech
signals more accurately than those that treat all frequencies
equally. However, during silent periods of speech signals, the
dependency models are not appropriate because they have
zero powers in all frequency bins, i.e., the same amount
of dependency between each pair of frequency bins. Since
speech signals have many intermittent silent intervals, the

model proposed in [6], [7], [9] is not sufficient to achieve
high separation performance.

On the other hand, motivated by research for ICA [10], [11],
signal states, active or inactive, were incorporated into IVA
models in [12], [13] since intermittent silent periods should
be modeled in principle as a delta function that is totally
different from those of speech periods. In the source models
of [12], [13], however, it is assumed that, given signal states,
the distributions of sources are independent between each pair
of frequency bins. In other words, the dependencies of active
speech signals in the frequency axis direction are disregarded,
which causes separation performance degradation.

Recently, as another extension of IVA, variances of sources
are modeled by using nonnegative matrix factorization (NMF)
in [8], [14]. This approach is called an independent low-rank
matrix analysis (ILRMA, [15]). By modeling sources with
NMF, ILRMA can express the co-occurrence of frequency
components such as the harmonic structure commonly seen
in speech and music signals. In particular, since the co-
occurrence in music signals is remarkable, ILRMA demon-
strates very high separation performance for them. However,
for speech signals that cannot be solely represented by the
co-occurrence of frequency components, modeling them with
NMF is not appropriate.

In this paper, we propose a novel source model where the set
of all frequency bins is divided into frequency bands and the
statistical dependency is assumed only within each band while
at the same time intermittent silent periods are captured by
switching signal distributions. In the proposed model, statisti-
cal dependencies that are only within neighboring frequency
bins can be represented for signals in the presence of speech,
while all frequency components can be modeled to have zero
powers for signals during silent periods. This makes it possible
to demonstrate higher separation performance than in the
conventional method [6], [7], [9], [12], [13]. In addition, since
the dependency of each band is treated uniformly and the
signal model by NMF is not assumed, the proposed model is
considered to better represent distributions of speech signals
than ILRMA.

Besides developing the new model, we derive an optimiza-
tion algorithm for it, where the states of sources, IVA filters,
and permutation alignments between each pair of frequency
bands are jointly optimized by combining an EM algorithm
with a fast and stable auxiliary function method for IVA pro-
posed in [16]–[18]. Owing to the simultaneous optimization,
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the proposed algorithm can robustly fit the prior of the model
to the distribution of each source. The experimental results
suggest that the proposed model with the robust optimization
algorithm is more effective than the conventional methods
when separating speech mixtures.

II. PROPOSED METHOD

A. Formulation

Assume that N sources are observed by N microphones. Let
us denote the source signals and the microphone observations
in each time-frequency bin (f, t) as

sf,t = [s1,f,t, . . . , sN,f,t]
⊤ (1)

xf,t = [x1,f,t, . . . , xN,f,t]
⊤, (2)

where ·⊤ means the matrix transpose, and f ∈ [NF ] :=
{1, . . . , NF } and t ∈ [NT ] := {1, . . . , NT } are the indexes of
frequency bins and time frames, respectively. As in the case
of the conventional FD-ICA and IVA, we assume the linear
mixing model

xf,t = Afsf,t, (3)

where Af is the N × N mixing matrix. The sources are
recovered by

sf,t = W ∗
f xf,t, Wf = [w1,f , . . . ,wN,f ], (4)

where ·∗ represents the conjugate transpose and Wf is the
demixing matrix whose columns consist of the separation
filters wn,f for each source n ∈ [N ] := {1, . . . , N}.

B. Generative model and objective function

Given a frequency range [NF ], [NF ] is divided into fre-
quency bands by introducing

F ⊆ 2[NF ] s.t. ⊔F∈F F = [NF ], (5)

where ⊔ denotes the disjoint union of sets. Then, let us assume
the decomposition of

p({sn,F,t}n,F,t) =
∏

n∈[N ]

∏
F∈F

∏
t∈[NT ]

p(sn,F,t), (6)

where we define

sn,F,t := [sn,f1,t, . . . , sn,fk,t]
⊤ (7)

for F = {f1, . . . , fk}. Decomposition (6) allows statistical
dependency within each frequency band F ∈ F but assumes
that each source is independent between frequency bands. We
call the above F a frequency range division.

To represent the source states (active/inactive), we introduce
hidden variables {zn,F,t}n,F,t defined as

zn,F,t =

{
1 if active,
0 if inactive.

(8)

Then, for each (F, t) ∈ F × [NT ] the probability density
function (p.d.f.) of source n is expressed as

p(sn,F,t) =
∑

c∈{0,1}

πn,t,c · p(sn,F,t | zn,F,t = c), (9)

where πn,t,c = p(zn,F,t = c) is the mixing coefficient. In
principle, the conditional p.d.f. under the state zn,F,t = 0 shall
be defined as the delta function since the power of the silent
signals is equal to zero. We use a Dirichlet prior for {πn,t,c}c
as

p({πn,t,c}c) ∝
∏

c∈{0,1}

(πn,t,c)
ϕc−1, (10)

where ϕc is the hyperparameter of the Dirichlet distribution.
Note that πn,t,c is assumed to be independent of frequency
F ∈ F , which makes the proposed method permutation-free
even under decomposition (6) (see Subsection II-D).

The set of parameters in the model is

Θ := {Wf , πn,t,c}n,f,t,c, (11)

which in this paper will be optimized based on a MAP criterion
that is equivalent to the following minimization problem (we
use relation (4)):

min
Θ
− 1

NT

∑
n,F,t

log p(sn,F,t)− 2
∑
f

log |detWf |

−
∑
n,t

log p({πn,t,c}c). (12)

C. EM algorithm for parameter estimation

In this subsection, an EM algorithm to solve (12) is devel-
oped. After the convergence of the EM, the separated signals
are obtained by (4), and the signal scale can be restored based
on the minimal distortion principle [19], [20], in which the
microphone observation of source n is calculated by

sn,f,tAfen = (w∗
n,fxf,t)(W

∗
f )

−1en ∈ CN , (13)

where en is a unit vector with the n-th element equal to one
and the other elements equal to zero.

1) E-step of EM algorithm: In the E-step, for each source
n ∈ [N ] and each time-frequency (F, t) ∈ F × [NT ], the a
posteriori probability of zn,F,t = c ∈ {0, 1} given an estimated
source signal s′n,F,t is expressed as

qn,F,t,c ≡ p(zn,F,t = c | s′n,F,t ; Θ
′)

=
π′
n,t,c · p(s′n,F,t | zn,F,t = c)∑

c∈{0,1} π
′
n,t,c · p(s′n,F,t | zn,F,t = c)

, (14)

where π′
n,t,c,w

′
n,f ∈ Θ′ denotes the model parameters esti-

mated in the last iteration of the EM algorithm and

s′n,f,t := (w′
n,f )

∗xf,t. (15)

This qn,F,t,c has a similar meaning to the conventional time-
frequency mask for source n, and in what follows it is called
a time-frequency mask as well.
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By using the time-frequency mask qn,F,t,c, the first term
of (12) is transformed as follows:

− log p(sn,F,t ; Θ)

=− log
∑
zn,F,t

p(sn,F,t, zn,F,t ; Θ)

≤−
∑

c∈{0,1}

qn,F,t,c log πn,t,c

−
∑

c∈{0,1}

qn,F,t,c log p(sn,F,t | zn,F,t = c ; Θ)

+
∑

c∈{0,1}

qn,F,t,c log qn,F,t,c, (16)

where the inequality holds if and only if

qn,F,t,c = p(zn,F,t = c | sn,F,t ; Θ). (17)

Inequality (16) gives an upper bound on the cost function of
(12) that we will try to minimize:

min
Θ
− 1

NT

∑
n,F,t,c

qn,F,t,c log p(sn,F,t | zn,F,t = c ; Θ)

− 2
∑
f

log | detWf |

−
∑
n,t,c

(
∑
F∈F

qn,F,t,c + ϕc − 1) log πn,t,c. (18)

2) M-step of EM algorithm: In the M-step, we update the
model parameters according to the problem (18). The update
rules for {πn,t,c}n,t,c are easily obtained as

πn,t,c ←
∑

F∈F qn,F,t,c + ϕc − 1

|F|+
∑

c∈{0,1}(ϕc − 1)
, (19)

where |F| denotes the cardinality of set F .
As for the separation filters {wn,f}n,f , we derive fast and

stable update rules based on an auxiliary function method for
IVA proposed by [16], [17]. To do that, we need to suppose in
the following that the conditional p.d.f. of signal sn,F,t given
its state zn,F,t ∈ {0, 1} is characterized by

rn,F,t := ∥sn,F,t∥2 =

√∑
f∈F

|sn,f,t|2. (20)

To simplify the notation, we define

g(n,F )
c (rn,F,t) := − log p(sn,F,t | zn,F,t = c), (21)

which we call a contrast function for the state c ∈ {0, 1}. It
will sometimes be abbreviated as gc(rn,F,t). Suppose also that
gc satisfies the following two conditions as in [16]–[18]:

(C1) gc : R>0 → R is continuously differentiable;

(C2) g′
c(r)
r is positive and monotonically decreasing,

where g′c is the first derivative of gc.

Functions that satisfy (C1) and (C2) include (30) below.

Under the above assumptions, we can derive the following
auxiliary function J(Θ) of the cost (18) in the same way as
described in [16]–[18]:

J(Θ) =
∑
n,f

w∗
n,fRn,fwn,f − 2

∑
f

log | detWf |+ C, (22)

where C is independent of {wn,f}n,f , and

Rn,f :=
1

NT

∑
t

[
ϕ(r′n,F,t)xf,tx

∗
f,t

]
, f ∈ F (23)

ϕ(r′n,F,t) :=

∑
c∈{0,1} qn,F,t,c · g′c(r′n,F,t)

2r′n,F,t

(24)

r′n,F,t :=

√∑
f∈F

|(w′
n,f )

∗xf,t|2. (25)

The minimization of (22) will be iteratively performed by
a block coordinate descent method, i.e., for each n ∈ [N ],
update wn,f in order using

wn,f ←
(
W ∗

fRn,f

)−1
en (26)

wn,f ←
wn,f√

w∗
n,fRn,fwn,f

(27)

D. Permutation alignment

While the independence between divided frequency bands
is assumed in (6), the proposed algorithm is not affected by the
permutation ambiguity after separating mixtures owing to the
frequency independent πn,t,c. This permutation-free technique
was first proposed by Ito et al. [21] to make BSS methods
based on time-frequency clustering permutation-free. This
technique can also be adopted in the proposed algorithm, i.e.,
at each step in the EM algorithm, the permutation alignments
σF : [N ] → [N ] (F ∈ F) are obtained to minimize (12) by
permuting the separation filters and the contrast functions as
follows:

wn,f ← wσF (n),f for f ∈ F, (28)

g(n,F )
c ← g(σF (n),F )

c . (29)

E. Contrast function

When we obtain the time-frequency mask (14), we need to
calculate the constant terms of contrast function gc for the state
c. In this paper, we use as the p.d.f. for {gc(r)}c a complex-
valued multivariate exponential power (MEP) distribution (see
e.g., [22] for real-valued MEP) given by

gc(r) =

(
r2

αc

)βc

− log
Γ(1 + d)

(αcπ)d · Γ(1 + d
βc
)

(30)

where d denotes the dimension of the complex-valued random
variables sn,F,t ∈ Cd (recall the relation of (20)), and Γ(·)
denotes the gamma function. Note that this contrast function
is the same as that in [17], under which a fast and stable
IVA based on an auxiliary function method can easily be
established.
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F. Summary of proposed algorithm

The following is the overall procedure of our algorithm:
1) Initialize the model parameters (11).
2) Iterate the following steps until convergence.

• Update {qn,F,t,c} by using (14).
• Update {πn,t,c} by using (19).
• Iterate the following steps until convergence.

– Calculate J(Θ) by using (22)-(25).
– Update {Wf} by using (26)-(27) iteratively.

• Solve the permutation by using (28) and (29).
3) Calculate the separated signals by using (4) and (13).

III. RELATION TO PRIOR WORK

Let us assume ϕc = 1 (c ∈ {0, 1}) in (10) and compare
the proposed method with the conventional FD-ICA and IVA.
Assume also that the source states are always active, i.e.,
πn,t,1 = 1 for (n, t) ∈ [N ] × [NT ]. Then, it holds that
qn,F,t,1 = 1 for each (n, F, t) ∈ [N ] × F × [NT ]. Hence, in
the case where F = {[NF ]} the proposed method is the same
as the conventional (auxiliary function based) IVA [16], [17].
On the other hand, in the case where F = {{f} : f ∈ [NF ]} it
is nothing but the conventional (auxiliary function based) FD-
ICA [4], [18]. In this sense, the proposed method is regarded
as an extension of FD-ICA and IVA.

Let us move on to explain the difference between the
proposed model and that in [6], [7], [9], both of which can
consider the statistical dependencies only within neighboring
frequency bins. In our model, we further introduce the idea
of switching priors according to the states of sources in a
statistical sense while switching priors cannot be performed in
the model of [6], [7], [9]. From the optimization viewpoint, to
switch the priors, we need the normalization terms of contrast
function gc for each state c as described in Subsection II-E.
However, since the source priors supposed in [6], [7], [9]
have the frequency-overlapped form (while our model has the
frequency-divided form), there are no closed-form expressions
of the normalization constants for them. In that mean, our
model is superior to that in [6], [7], [9].

IV. EXPERIMENT

A. Conditions

To confirm the effectiveness of the proposed method, we
conducted an experiment using speech signals of two Japanese
males recorded in a meeting room. In the experiment, we
compared the following methods: AuxIVA1 (an auxiliary
function based IVA with spherical distribution [16], [17]),
AuxIVA2 (an auxiliary function based IVA with non-spherical
distribution [9]), ILRMA [8], [14], [15], and three proposed
methods indexed by k ∈ {1, 2, 4}. The evaluation data was
created by adding microphone observation signals of each
speaker recorded using a circular array with a diameter of
75 mm and eight microphones. In the experiment, we pre-
pared mixtures (N = 2) of all the microphone combinations
(8C2 = 28 samples in total). The following four pairs of

TABLE I
EXPERIMENTAL CONDITIONS

Sampling rate 16 kHz
Frame length (points) 4069 (256 ms) or 8192 (512 ms)

Frame shift Half of frame length
Window function Hanning

Signal length 10 s
Source-microphone distance 1 m
Reverberation time (RT60) 710 ms

source directions were examined: {−30◦, 30◦}, {−60◦, 60◦},
{−90◦, 90◦}, {0◦, 90◦}.

In the proposed method k ∈ {1, 2, 4}, the frequency range
division Fk is set

Fk = {F1, . . . , Fk} (31)

Fi = {⌊NF −
NF

2i−1
⌋+ 1, . . . , ⌊NF −

NF

2i
⌋}

for i = 1, . . . , k − 1 (32)

Fk = [NF ] \ ⊔k−1
i=1 Fi. (33)

Also, we set (α0, β0) = (0.09, 0.1) and (α1, β1) = (1, 0.1)
in (30) and ϕc = 5 (c ∈ {0, 1}) in (10). In the ILRMA, the
partitioning function was not used, and the number of bases
was set to two for each source, where ILRMA demonstrates
the best performance for speech signals according to [8]. In
AuxIVA1 and AuxIVA2, the contrast functions are set by (30)
with (α, β) = (1, 0.1) (note that AuxIVA1 and AuxIVA2 do
not consider source states). In AuxIVA2, we chose LIN2 and
LIN4 as source models as defined in [7, Table 1]. In each
method, the separation filters {Wf}f are initialized by the
Identity matrix while the other parameters are identified by
the value drawn from the uniform distribution on (0, 1) ⊆ R.
In our method, the time-frequency masks {qn,F,t,c}n,F,t,c of
signals are updated as described in Subsection II-F, except that
we set (not update) them by 1 − qn,F,t,0 = qn,F,t,1 = 0.999
only for the first time.

In the experiment for each method, we optimized {Wf}f
by an auxiliary function method, whose iteration number was
set to 200 throughout the experiment. In the proposed method,
the time-frequency mask was updated every 10 iterations. We
used the average signal-to-distortion ratio (SDR [23]) of two
speakers as an evaluation criterion. The other experimental
conditions are described in Table I.

B. Results

Figure 1 shows the average scores and their deviations
among the 28 samples. In the figure, models LIN2 and LIN4
show slightly better results than IVA as a whole. Also, the
proposed model with the frequency range division F1 shows
almost the same results as IVA. On the other hand, the
proposed models with F2 and F4 show higher separation per-
formance than IVA. The deviation of the scores is rather large,
but these results suggest that our model better represents the
distribution of speech signals by simultaneously considering
(i) the statistical dependencies within neighboring frequency
bins such as in LIN2 and LIN4 and (ii) the state of each source
such as in the proposed model with F1.
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Fig. 1. Average SDR improvement and its deviation in four pairs of source
directions when frame length is (a) 4096 points and (b) 8192 points. IVA
corresponds to AuxIVA1, and LIN2 and LIN4 correspond to AuxIVA2. Also,
F1, F2, and F4 denote proposed method with frequency range division F1,
F2, and F4, respectively.

Compared with ILRMA, which models sources by using
NMF, our models with F2 and F4 give similar scores when
(a) the frame length is 4096 points. However, when (b) the
frame length is 8192 points and the pair of source directions
is {−90◦, 90◦} or {0◦, 90◦}, our models show rather better
results. The performance degradation of ILRMA in (b) is con-
sidered to occur because speech signals cannot be captured by
co-occurrence of frequency components alone, which implies
that our model is superior to that of ILRMA for speech signals.

V. CONCLUSION

This paper proposed a new generative model for IVA by
introducing frequency range division and source prior switch-
ing to better represent the distribution of speech signals. In
addition, we derived an optimization algorithm for the model,
where the states of sources (active/inactive), IVA filters, and
permutation alignments between each pair of frequency bands
are jointly optimized. The experimental results suggest the
effectiveness of the proposed model for speech signals.
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