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Abstract—Various works have been carried out about the
Jeffrey’s divergence (JD) which is the symmetric version of the
Kullback-Leibler (KL) divergence. An expression of the JD for
Gaussian processes can be deduced from the definition of the
KL divergence and the expression of the Gaussian-multivariate
distributions of k-dimensional random vectors. It depends on the
k × k Toeplitz covariance matrices of the stationary processes.
However, the resulting computational cost may be high as these
matrices must be inverted and it is all the higher as k increases. To
circumvent this problem, a recursive expression can be obtained
for real 1st-order autoregressive (AR) processes. When they are
disturbed by additive uncorrelated white noises, we showed that
when k becomes large, the derivative of the JD with respect to
k tends to be constant. This constant is sufficient to compare the
noisy AR processes. In this paper, we propose to extend our work
to AR moving-average (MA) processes with one AR term and
one MA term. Some examples illustrate the theoretical analysis.

Index Terms—Jeffrey’s divergence, Kullback-Leibler diver-
gence, autoregressive moving-average processes.

I. INTRODUCTION

Comparing stochastic processes such as autoregressive moving-
average (ARMA) processes can be useful in many applications,
especially when classification is required and when change detection
is of interest. One intuitive approach would be to compare the
process-parameter vectors by computing the 2-norm or the ∞-norm
of the vector difference. Cepstral distance can be also useful. It makes
it possible to distinguish EEG signals recorded a few minutes after
an asphyxic cardiac arrest injury [1]. Another way is to compare
the power spectra of the data. Thus, the spectral distortion between
the natural and the synthetic speech can be based on the COSH
distance which is defined from the power spectra of the data to be
compared [2]. The log-spectral distance and the Itakura-Saito distance
are also widely computed, especially in speech processing. As an
alternative, divergences that aim at measuring the similarity between
sample distributions can be also considered. In recent papers such as
[3], the Jeffrey’s divergence (JD), which is the symmetric Kullback-
Leibler (KL) divergence, is recursively computed for the distributions
of successive samples of two time-varying AR (TVAR) processes.
The approach has been then extended to classify more than two
AR processes in various subsets [4]. Concerning the moving-average
(MA) processes, the analytical expression of the JD between 1st-order
MA processes, that can be real or complex, noise-free or disturbed
by additive white Gaussian noises, is given in [5].

In this paper, our purpose is to compare two real autoregressive
moving-average (ARMA) processes with one AR term and one MA
term by using the JD between the distributions of k successive
samples of each process. As the correlation matrix of an ARMA
process is similar to the one of a noisy AR process, we suggest
comparing the ARMA processes by using the results we recently
obtained about the JD between noisy AR processes. In the ARMA
case, and a fortiori in the general case, interpreting a value of a JD is
not so easy. It is true that the smaller the value is, the less dissimilar

the processes are. Among the questions that can arise, the practitioner
may wonder which value of k is relevant.
For these reasons, we propose to give an expression of the JD
depending on the ARMA parameters. We study how the JD evolves
when k increases and we show that after a transient period, the JD
is incremented by the same value between two consecutive values of
k. This phenomenon is always true except when the MA parameter
of one or the two processes is equal to 1 or -1. This analysis can
help the practitioner see the influences of the ARMA parameters on
the JD.

This paper is organized as follows: in sections II and III, we
briefly recall the main properties of the ARMA processes and the
JD between 1st-order AR processes as well as the JD between two
noisy AR processes. In section IV, the JD between ARMA processes
is addressed. In section V, theoretical results are illustrated by some
examples.
In the following, Ik is the identity matrix of size k. (Q)g,h denotes

the element of the matrix Q which is at the gth row and the hth

column. Tr is the trace of a matrix. The upperscript T denotes the
transpose.

II. ABOUT REAL AUTOREGRESSIVE MOVING-AVERAGE

PROCESSES

A. Definition and properties of an ARMA process

Let us define the ARMA process, ARMA1,1(a, b, σ
2), as follows:

xk = −axk−1 + uk + buk−1, (1)

where a and b are the process parameters whereas u is the zero-mean
driving process with variance σ2. It should be noted that a, b and σ2

are used for the sake of simplicity instead of a1, b1 and σ2
u. When

|b| = 1, the power spectral density of the ARMA process is equal
to 0 either at the normalized angular frequency θ = 0 or θ = ±π.
Moreover, 0 < |a| < 1 to guarantee stability. If a = 0, the resulting
process is a 1st-order MA process. If b is equal to 0, it reduces to
a 1st-order AR process, denoted as AR1(a, σ

2), and the correlation

function is equal to rAR(a,σ2)(τ) =
(−a)|τ|

1−a2 σ2 with τ the time lag.

When both a and b are equal to 0, xk reduces to a white noise.
The correlation function of the ARMA process, denoted as rxx(τ),
satisfies:






rxx(0) = rAR(a,σ2)(0) +
b

1−a2 (b− 2a)σ2,

rxx(1) = rxx(−1) =−arAR(a,σ2)(0) +
b

1−a2 (1 + a2 − ab)σ2,

rxx(τ) = rxx(−τ) = −arxx(τ − 1), otherwise.
(2)

In the following, the Toeplitz correlation matrix of the vector storing
k consecutive values of the ARMA1,1(a, b, σ

2) process is denoted as
QARMA(a,b,σ2),k whereas the one related to the process AR1(a, σ

2)
is denoted as QAR(a,σ2),k. If the process AR1(a, σ

2) is disturbed

by an additive white zero-mean Gaussian noise nk with variance σ2
n

and uncorrelated with the driving process uk, the Toeplitz correlation
matrix of the noisy AR process is QNAR(a,σ2,σ2

n),k. Since there is
no straightforward expression of the inverse of QARMA(a,b,σ2),k, it
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can be shown that it can take the form of the correlation matrix of a
”noisy” AR as follows:

QARMA(a,b,σ2),k =

[

a− (1 + a2)b+ ab2

a

]

QAR(a,σ2),k +
b

a
σ
2
Ik.

(3)

When a = b or a = 1
b

, the gain
[

a−(1+a2)b+ab2

a

]

is equal to 0. In

this case, QARMA(a,b,σ2),k reduces to the diagonal matrix b
a
σ2Ik.

Besides, when b
a
σ2 > 0, this perturbation corresponds to a zero-

mean white noise sequence with variance b
a
σ2. More generally, this

disturbance can be seen in the frequency domain as an offset equal to
b
a
σ2 which can be positive or negative because b and a can take any

value except zero (otherwise, this is no longer an ARMA process).
In the following, we suggest rewriting (3) as follows:

QARMA(a,b,σ2
u),k = QAR(a,Ψ),k +ΥIk = QNAR(a,Ψ,Υ),k, (4)

where Ψ =
[

a−(1+a2)b+ab2

a

]

σ2 and Υ = b
a
σ2. It is true that they

are not necessarily positive and hence cannot be considered properly
as variances of white sequences. It should be noted that the AR
parameter a is unchanged after this transformation.

B. Parameter estimation methods

In the noise-free or noisy case, both the AR parameters and the MA
parameters as well as the driving-process variances can be predefined
or estimated from a set of data. In this latter case and for the noise-
free case, the AR parameters can be estimated in many ways: Yule-
Walker (YW) equations, correlation method, adaptive filtering, etc.
Concerning the MA parameter estimations, one can use the Durbin
algorithm, the approach combining the inverse Fourier transform of
the inverse of the MA power spectral density (PSD) and the YW
equations [6], the ”vocariance” methods [7] [8], the one based on
higher-order statistics [9], the covariance fitting approaches [10] and
the spectral factorization based on the estimation of the outer factor
in the PSD such as [11].
In the noisy case, adaptive filters such as the γ-LMS [12] and the ρ-
LMS [13] and extended Kalman filter can estimate the AR parameters
from noisy observations. As an alternative, higher-order YW equa-
tions, iterative bias compensation schemes such as those proposed by
[14], Davila’s method [15] or errors-in-variables (EIV) approaches
[16] [17] can be considered. In [18] and [19], the estimations of
the ARMA parameters are addressed from noisy observations. More
particularly, in [18], Fattah et. al. suggest combining approaches
that were initially proposed by Davila [15] for the AR-parameter
estimations and Stoica [10] for the MA-parameter estimations.

III. DEFINITION OF JEFFREY’S DIVERGENCE BETWEEN

STOCHASTIC PROCESSES

To analyze the dissimilarities between two random processes x
and y, the JD between the joint distributions of k successive values
of both processes can be computed. It is deduced by symmetrizing
the KL expression as follows:

JD
(x,y)
k =

1

2
(KL

(x,y)
k +KL

(y,x)
k ), (5)

where KL
(x,y)
k denotes the KL divergence between the multivariate

densities p and q.
When dealing with Gaussian processes, the KL divergence between
two real multivariate Gaussian densities p and q with means µx,k and
µy,k and covariance matrices Qx,k and Qy,k [20] can be obtained
by combining the definition of the KL and the expressions of the
Gaussian distributions as follows:

KLk
(x,y) =

1

2

[

Tr(Qy,k
−1

Qx,k)− k − ln
detQx,k

detQy,k

(6)

+ (µy,k − µx,k)
T
Qy,k

−1(µy,k − µx,k)
]

. (7)

Given (5) and (6), the JD becomes for zero-mean processes:

JDk
(x,y) = −k +

1

2

[

Tr(Qy,k
−1

Qx,k) + Tr(Qx,k
−1

Qy,k)
]

. (8)

In this case, the JD is only defined from the k×k covariance matrices
of the processes. Nevertheless, these matrices must be inverted. When
dealing with AR or MA processes, the resulting correlation matrix
have specific structures. Various works have been done about the
expressions of their inverses. See [21] and [22]. As a consequence,
analytical expressions of the JD can be obtained. They depend on
the process parameters, but it still implies multiplication of matrices
of size k× k. As an alternative, in [3] and [4], the JD between joint
densities of k samples of AR processes, namely AR1(a(1), σ

2
(1)) and

AR2(a(2), σ
2
(2)), can be deduced recursively as follows:

JDAR,k+1 = JDAR,k +A+B, (9)

with:

A = −1 +
1

2
(Rar +

1

Rar

), (10)

and:

B =
(a(2) − a(1))

2

2

[

1

1− (a(1))2
1

Rar

+
1

1− (a(2))2
Rar

]

, (11)

where the driving-process variance ratio is equal to Rar =
σ2
(2)

σ2
(1)

and A is the JD between the distributions of one sample of each
driving process. The difference between two consecutive JD is hence
a constant equal to A+B and can be defined as follows:

∆JDAR = JDAR,k+1 − JDAR,k = A+B (12)

This increment ∆JDAR is sufficient to compare the AR processes.
In a recent work, we suggested studying if the JD follows the
same type of property when dealing with noisy AR processes,
namely NAR1(a(1), σ

2
(1), σ

2
n(1)

) and NAR2(a(2), σ
2
(2), σ

2
n(2)

). For

this reason, we proposed to deduce this JD denoted as JD
(1,2)
NAR,k

from the one computed when the processes are noise-free. More
particularly, using the inversion matrix lemma [23] we showed that:

JD
(1,2)
NAR,k = JD

(1,2)
AR,k +

Ck

2
, (13)

where the offset Ck due to the white additive noises is the sum of
six terms:

Dk,1 =σ
2
n(2)Tr

[

Q
−1

AR(a(1),σ
2
(1)

),k

]

, (14)

Ek,1 =− σ
2
n(1)σ

2
n(2)Tr

[

Q
−1

AR(a(1),σ
2
(1)

),k
(15)

(

Ik + σ
2
n(1)Q

−1

AR(a(1),σ
2
(1)

),k

)

−1

Q
−1

AR(a(1),σ
2
(1)

),k

]

,

Fk,1 =− σ
2
n(1)Tr

[

Q
−1

AR(a(1),σ
2
(1)

),k

(

Ik + σ
2
n(1)Q

−1

AR(a(1),σ
2
(1)

),k

)

−1

Q
−1

AR(a(1),σ
2
(1)

),k
QAR(a(2),σ

2
(2)

),k

]

, (16)

and three other terms, denoted as Dk,2, Ek,2 and Fk,2 similarly
defined as Dk,1, Ek,1 and Fk,1 but where the subscripts are switched.
We showed that there is a transient period before the derivatives of
these terms with respect to the number of variates k become constant.

• For k ≥ 2, ∆D1 = Dk+1,1 −Dk,1 satisfies:

∆D1 =
σ2
n(2)

σ2
(1)

(

1 + a(1)
2)

. (17)
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• When k becomes large, ∆E1 = Ek+1,1 − Ek,1 is equal to:

∆E1 = −
σ2
n(2)

σ2
(1)

Z

a(1) (Z2 − 1)

[

(

1 + 4a(1)
2 + a(1)

4)

+
(

4a(1)

(

1 + a(1)
2))

Z + 2a(1)
2
Z

2
]

for 0 < a(1) < 1, (18)

and:

∆E1 =
σ2
n(2)

σ2
(1)

Z

a(1) (Z2 − 1)

[

(

1 + 4a(1)
2 + a(1)

4)

+
(

4a(1)

(

1 + a(1)
2))

Z
−1 + 2a(1)

2
Z

−2
]

for − 1 < a(1) < 0,

(19)

where1:

Z =
1

2

[

−

(

1

a(1)

(

1 + ρ(1)
)

+ a(1)

)

(20)

+

√

(

1

a(1)

(

1 + ρ(1)
)

+ a(1)

)2

− 4

]

,

and where ρ(1) is the ratio between the variance of the driving process
and the variance of the additive white noise:

ρ(1) =
σ2
(1)

σ2
n(1)

> 0. (21)

• We can also deduce ∆F1 in the asymptotical case. For this

purpose, let us first introduce S
(1)
k = (Ik + σ2

n(1)QAR(a(1),σ
2
(1)

),k).

One can show that:

(

S
(1)
k

)

g,h
=−

σ2

u(1)

σ2

n(1)

Zh+1−g

a(1)(Z2
−1)

((

Z2g − 1
)

+ a(1)Z
(

Z2g−2 − 1
))

×

((

Z2k+2−2h − 1
)

+ a(1)Z
(

Z2k−2h − 1
))

Z2k+2 − 1 + 2a(1)Z (Z2k − 1) + a(1)
2Z2 (Z2k−2 − 1)

, (22)

for g ≤ h and
(

S
(1)
k

)

g,h
=

(

S
(1)
k

)

h,g
when g ≥ h.

According to (22), the range of values taken by Z varies and depends
on the value of the AR parameter a(1). This leads to:

(

S
(1)
lim

)

g,h
= lim

k→+∞

(

S
(1)
k

)

g,h
(23)

=



























−
σ2
(1)

σ2

n(1)

Zh+1−g

a(1)(Z2
−1)

((Z2g
−1)+a(1)Z(Z2g−2

−1))
(1+a(1)Z)

when − 1 < Z < 0, i.e. for 0 < a(1) < 1,

−
σ2
(1)

σ2

n(1)

Z−h+1−g

a(1)(Z2
−1)

((Z2g
−1)+a(1)Z(Z2g−2

−1))
(1+a(1)Z

−1)
when Z > 1, i.e. for − 1 < a(1) < 0.

It should be noted that
(

Z2 − 1
)

is necessarily different from 0 as

well as
(

1 + a(1)Z
)

or
(

1 + a(1)Z
−1

)

.

Now, let us consider T
(1)
k = Q−1

AR(a(1),σ
2
(1)

),k
S

(1)
k Q−1

AR(a(1),σ
2
(1)

),k
,

1The notation should be Z(1), but we have decided to omit the superscript
(1) in the section in order to simplify the presentations of the equations.

where for g = 2, ..., k − 1 and h = 2, ..., k−1, it can be shown that

lim
k→+∞

(

T
(1)
k

)

g,h
=

(

T
(1)
lim

)

g,h
:

(

T
(1)
lim

)

g,h
=

1

σ4
u(1)

[

(

1 + a
2
(1)

)2
(

S
(1)
lim

)

g,h
(24)

+a(1)

(

1 + a
2
(1)

)

(

(

S
(1)
lim

)

g+1,h
+

(

S
(1)
lim

)

g−1,h

+
(

S
(1)
lim

)

g,h+1
+

(

S
(1)
lim

)

g,h−1

)

+a
2
(1)

(

(

S
(1)
lim

)

g−1,h−1
+

(

S
(1)
lim

)

g+1,h+1

+
(

S
(1)
lim

)

g+1,h−1
+

(

S
(1)
lim

)

g−1,h+1

)]

,

When k becomes large, ∆F1 = Fk+1,1 − Fk,1 is equal to:

∆F1 = −σ
2
n(1)

[

σ2
(2)

1− a(2)
2

(

(

T
(1)
lim

)

k
2
, k
2

(25)

+ 2

k
2
−1

∑

i=1

(

T
(1)
lim

)

k
2
,i
(−a(2))

( k
2
−i)

)]

,

By combining (17), (18) and (25), after a transient period, the
difference between Ck+1 and Ck does not depend on k and becomes
a constant. Therefore, using (13) and when k becomes large, one has:

lim
k→+∞

JDNAR,k+1 − JDNAR,k = ∆JDNAR (26)

=∆JDAR +
∆D1 +∆E1 +∆F1 +∆D2 +∆E2 +∆F2

2
= Cte,

where the variations ∆D2, ∆E2 and ∆F2 are similarly defined as
∆D1, ∆E1 and ∆F1. In this case, the increment ∆JDNAR was
shown to be sufficient to compare noisy AR processes.
Finally, in [24], the MA case was also addressed. We showed that the
JD increment tends to be a constant except when the MA-parameter
modulus was equal to 1.
In the next section, let us study the JD between two ARMA processes.

IV. JD BETWEEN ARMA PROCESSES BASED ON THE

ANALYSIS OF THE JD BETWEEN NOISY AR PROCESSES

In this section, we suggest addressing the analysis of the JD
between ARMA processes by using the results we obtained for noisy
AR processes.
The JD between the process ARMA(a(1), b(1), σ

2
(1)) and the process

ARMA(a(2), b(2), σ
2
(2)) amounts to studying the JD between the pro-

cess NAR(a(1), ,Ψ(1),Υ(1)) and the process NAR(a(2), ,Ψ(2),Υ(2))
where Ψ(l) and Υ(l) with l = 1, 2 are defined as in (4). In the
following, our purpose is to express the increment as we did in (26):

lim
k→+∞

JDARMA,k+1 − JDARMA,k = ∆JDARMA (27)

= ∆JDAR +
∆D1 +∆E1 +∆F1 +∆D2 +∆E2 +∆F2

2
.

In (4), the AR parameter remains unchanged in the mapping between
the ARMA and the NAR process but the driving-process variances
change. ∆JDAR is hence equal to A+B according to (9)-(11), but
Rar is now defined as the ratio between Υ(2) and Υ(1). In addition,
due to (17), ∆D1 now satisfies:

∆D1 = Dk+1,1 −Dk,1 =
Υ(2)

Ψ(1)

(

1 + a(1)
2)

. (28)

Let us now analyze ∆E1 and ∆F1. The expressions (18) and (25)
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must be adjusted. Indeed, in the JD between noisy AR processes,
ρ(1) defined in (21) was always positive. As Z could be greater than

1 or between -1 and 0, two expressions of
(

S
(1)
lim

)

g,h
were proposed

in (23). For the ARMA case, ρ(1) is no longer necessary positive.
Therefore, we have to analyze how the properties of Z evolve in the
next subsections.

A. About the properties of ρ(1) in the ARMA case

When dealing with ARMA processes, according to (4), ρ(1)
becomes equal to:

ρ(1) =
Ψ(1)

Υ(1)
=

a(1) − (1 + a2
(1))b(1) + a(1)b

2
(1)

b(1)
. (29)

This quantity is hence positive or negative depending on the value of
the ARMA parameters. It should be also noted that the same value
of ρ(1) can be obtained by the couples (a(1), b(1)) and (a(1),

1
b(1)

).

B. About the properties of Z in the ARMA case

Let us now analyze the values that Z can take. First of all, due
to the new properties of ρ(1) in the ARMA case, one has to check
whether the variable Z is real or complex. Due to the definition (20)
of Z and the new value of ρ(1) in (29), it depends on the sign of

F (ρ(1)) =
(

1
a(1)

(

1 + ρ(1)
)

+ a(1)

)2

− 4. If ρ(1)min
and ρ(1)max

respectively denotes the minimum and the maximum roots of F (ρ(1))

among −
(

1 + a(1)

)2
and −

(

1− a(1)

)2
, F (ρ(1)) would be negative

and Z would be complex for any value of a(1) in the interval ]−1, 1[
provided ρ(1)min

< ρ(1) < ρ(1)max
. This is however not possible

for any a(1) and b(1). As a consequence, Z is always real.
Then, it can be easily shown that two cases can happen. Either Z > 1
or −1 < Z < 0. See Figure 1.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-1

-0.5

0

0.5

1

0<a
(1)

<1 & b
(1)

<0

-1<a
(1)

<0 & b
(1)

<1/a
(1)

-1<a
(1)

<0 & a
(1)

<b
(1)

-1<a
(1)

<0 & 0<b
(1) -1<Z<0

-1<Z<0
Z>1

Z>1

-1<a
(1)

< 0 & 1/a
(1)

<b
(1)

<a
(1)

0<a
(1)

<1 & b
(1)

<a
(1)

0<a
(1)

<1 & 1/a
(1)

<b
(1)

0<a
(1)

<1 & a
(1)

<b
(1)

<1/a
(1)

Fig. 1. Property on Z depending on a(1) and b(1).

All the cases have been addressed except b(1) = 1 or b(1) = −1. In
these cases, for any value of a(1), Z = −1 or Z = 1 meaning that
(

Z2 − 1
)

= 0. This result is hence coherent with [24].

C. About the properties of
(

S
(1)
lim

)

g,h
in the ARMA case

Given the above analysis about Z, (23) now satisfies, except for
|b(1)| = 1:

(

S
(1)
lim

)

g,h
=











































−
σ2

u(1)

σ2

n(1)

Zh+1−g

a(1)(Z2
−1)

((Z2g
−1)+a(1)Z(Z2g−2

−1))
(1+a(1)Z)

for

{

a(1) > 0
b(1) > 0

or

{

a(1) < 0
b(1) > 0

,

−
σ2

u(1)

σ2

n(1)

Z−h+1−g

a(1)(Z2
−1)

((Z2g
−1)+a(1)Z(Z2g−2

−1))
(1+a(1)Z

−1)

for

{

a(1) < 0
b(1) < 0

or

{

a(1) > 0
b(1) < 0

.

(30)

D. About the expressions of ∆E1 and ∆F1 in the ARMA case

The expression of ∆E1 initially introduced in (18) must be
replaced by:

∆E1 = −
Υ(2)

Ψ(1)

Z

a(1) (Z2 − 1)

[

(

1 + 4a(1)
2 + a(1)

4)
(31)

+
(

4a(1)

(

1 + a(1)
2))

Z + 2a(1)
2
Z

2

]

for

{

a(1) > 0
b(1) > 0

or

{

a(1) < 0
b(1) > 0

,

∆E1 =
Υ(2)

Ψ(1)

Z

a(1) (Z2 − 1)

[

(

1 + 4a(1)
2 + a(1)

4)

+
(

4a(1)

(

1 + a(1)
2))

Z
−1 + 2a(1)

2
Z

−2

]

for

{

a(1) < 0
b(1) < 0

or

{

a(1) > 0
b(1) < 0

.

Finally, the expression of ∆F1 initially introduced in (25) must be
replaced by:

∆F1 = −Υ(1)

[

Ψ(2)

1− a(2)
2

(

(

T
(1)
lim

)

k
2
, k
2

(32)

+ 2

k
2
−1

∑

i=1

(

T
(1)
lim

)

k
2
,i
(−a(2))

( k
2
−i)

)]

.

∆JDARMA is the sum of ∆JDAR, the variations ∆D1, ∆E1 and
∆F1 defined in (28), (31), (32) and ∆D2, ∆E2 and ∆F2 that can
be easily deduced by switching the subscripts (1) and (2) in (28),
(31), (32).

E. Comments

Except when the MA parameter of one or the two ARMA pro-
cesses is equal to 1 or −1 , the derivative of the JD between ARMA
processes with respect to k becomes a constant when k is getting
higher. As for the AR and the MA case, the resulting asymptotic
increment is sufficient to compare the processes. In the next section,
let us illustrate these theoretical results by some examples.

V. ILLUSTRATIONS AND COMMENTS

Let us first consider two ARMA processes where a(1) = 0.7,

b(1) = 2, σ2
u(1) = 2 and a(2) = −0.9, b(2) = 1.1 and σ2

u(2) = 3.
The results are presented on Figure 2. It is confirmed that the JD
between both ARMA processes tends to be constant after a transient
period. In addition, on Figure 2 (b), JDARMA,k+1 −JDARMA,k is
compared with ∆JDARMA. This particular case illustrates how the
difference between the JDs for two successive instants tends to the
constant derived in the theoretical part.
Depending on the ARMA parameters, the convergence speed
towards the asymptotic increment is not the same. This phe-
nomenon can be seen by comparing Figure 2 (b) and Fig-
ure 3, where a(1) = 0.9, a(2) = 0.7 - b(1) = 2.5, b(2) = −0.5 -

σ2
u(1) = 1, σ2

u(2) = 2. Note that the value of the increment is not
the same also. In addition, we can see the increment as a function
of the AR parameter a(2), on Figure 4 where a(1) = 0.7, b(1) = 2,

σ2
u(1) = 2, b(2) = 1.1, σ2

u(2) = 3, k is set at 50 whereas a(2) varies in
[−0.9, 0.9]. On this example, k is sufficiently large and ∆JDARMA

fits JDARMA,k+1 − JDARMA,k.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied the JD between two real ARMA
processes with one AR parameter and one MA parameter. As the
correlation matrix of the ARMA process has a structure similar
to the one of the noisy AR process, we suggested analyzing how
to benefit of the study we did for the JD between AR processes
disturbed by additive white noises. This study is also useful to select
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Fig. 2. JD and its increment evolutions when a(1) = 0.7, a(2) = −0.9 -

b(1) = 2, b(2) = 1.1 - σ2
u(1) = 2, σ2
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Fig. 3. JD and its increment evolutions when a(1) = 0.9, a(2) = 0.7 -

b(1) = 2.5, b(2) = −0.5 - σ2
u(1) = 1, σ2
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Fig. 4. Evolutions of JDARMA,k+1−JDARMA,k and ∆JDARMA when
a(2) varies.

k. Thus, due to the transient regime, it is better to avoid computing
the JD for small values of k. Secondly, the derivative of the JD
with respect to the number of variates k tends to be a constant. The
resulting asymptotic increment is relevant of the behavior of the JD
and is sufficient to compare ARMA processes. An expression of this
asymptotic increment is given and depends on the ARMA parameters.
We are currently investigating the case of noisy ARMA processes.
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