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Abstract—The paper is motivated by recent and rapid growth
of Cyber-Physical Systems (CPS) and the critical necessity for
preserving restricted communication resources in their appli-
cation domains. In this context, a distributed state estimation
architecture is considered where a remote sensor communicates
its measurements to the fusion centre (FC) in an event-based fash-
ion. We propose a systematic and intuitively pleasing distributed
state estimation algorithm which jointly incorporates point and
set-valued measurements within the particle filtering framework.
Referred to as the event-based particle filter (EBPF), point-valued
measurements are incorporated in the estimation recursion via
a conventional particle filter formulation, while set-valued mea-
surements are incorporated by developing an observation update
step similar in nature to quantized particle filtering approach.
More specifically, in the absence of an observation (i.e., having
a set-valued measurement), the proposed EBPF evaluates the
probability that the unknown observation belongs to the event-
triggering set based on its particles which is then used to update
the corresponding particle weights. The simulation results show
that the proposed EBPF outperforms its counterparts specifically
in low communication rates, and confirms the effectiveness of the
proposed hybrid estimation algorithm.

Index Terms—Cyber-physical systems, Event triggering,
Event-based estimation, Particle filtering, Set-valued mea-
surements, Non-Gaussian state estimation.

I. INTRODUCTION

The paper develops an event-based estimation framework,
referred to as event-based particle filtering (EBPF), for dis-
tributed state estimation problems where the remote sensor
communicates its measurements to the fusion centre (FC) in
an event-based fashion, and the non-linear estimator, resided
at the FC, jointly incorporates point and set-valued measure-
ments to estimate the non-Gaussian posterior distribution. The
Kalman filter (KF) [1] is considered as the classical state
estimation approach in this context due its simple and efficient
sequential formulation. In a conventional KF-based estimation
scheme, each sensor samples and communicates its local mea-
surements to the FC periodically using equidistance samples
(referred to as a time-driven strategy). Recent developments
and advancements of sensor technologies, cyber-physical sys-
tems (CPS) [2], and network control systems (NCS) [3]
renders the above mentioned conventional approach to be
impractical because of the following key reasons: (i) Mea-
surements contain different information contents over time;
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(ii) Sensor nodes have restricted power supplies, therefore,
can not afford to periodically transfer information to the FC
as communication is the main source of power consumption,
and; (iii) The channel bandwidth is limited, another barrier
in implementing time-driven distributed estimation algorithms
such as the conventional KF. These issues have resulted in a
recent surge of interest in developing intelligent transmission,
scheduling, and estimation schemes [4]–[12] to reduce the
communication overhead of sensors in order to increase their
practical applicability by improving their energy efficiency.

Recent Solution methodologies developed to reduce the
aforementioned extra communication overhead, associated
with distributed estimation, can be generally classified into:
(i) State estimation based on offline scheduling schemes [13],
[14] where the transmission schedule is designed in advance of
employment, and; (ii) Event-based estimation (EBE) method-
ologies [15]–[20] where communication of sensor information
is only triggered once the system meets a specific condition,
which is identified using a triggering mechanism at the sensor
level based on real-time local observations. While it is simpler
to impalement algorithms belonging to the former category, a
priori information regarding the physical system is required
and their performance is typically unacceptable in practice,
specially in hostile environments where the characteristics
of the system constantly changes. This resulted in a recent
surge of interest in designing/developing event-based imple-
mentations as they are capable of providing the possibility of
maintaining the required estimation performance under strict
communication constraints.

The event-based concept emerged by the seminal work
of Astrom and Bernhardsson [21] where it was shown that
Lebesgue sampling is superior for state estimation purposes
in some dynamical systems. References [22], [23] are among
the early event-based methodologies and proposed the send-
on-delta (SOD) triggering mechanism where the transmission
is triggered only when the difference between the current
measurement and the previously transmitted one is greater than
a pre-defined threshold (delta). In such event-based estimation
scenarios and in the absence of an observation (i.e., the
triggering conditions are not satisfied) the estimator still has
access to side information, i.e., the measurement belongs to the
set characterized by the triggering mechanism. Incorporation
of the side information from the event-triggering mechanism
during non-event iterations results in a hybrid update strat-
egy, i.e., state estimation with joint set-valued and point-
valued measurements which is first considered in [24] and
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Fig. 1. Block diagram of the open-loop event-based estimation architecture.

has recently been extended in Reference [8]. In this context
the mechanism used to trigger an event at the sensor side
dictates the nature of the posterior distribution at the remote
estimator and consequently mandates the proper (possibly
optimal) form of the estimation/fusion algorithm at the FC.
In the conventional time-driven scenario with point-valued
measurements the simple and efficient formulation of the KF
comes from the Gaussianity of conditional posterior distribu-
tion. In the hybrid scenarios described above, however, due
to joint incorporation of set and point valued measurements,
the posterior distribution becomes non-Gaussian, therefore, the
conventional KF is no longer applicable.

To overcome non-Gaussianity of the posterior distribution,
some efforts have been recently considered specially by im-
posing a Gaussian assumption on the posterior distribution,
e.g., using single Gaussian approximation [7], [8], Gaussian
sum approximation [9], and non-linear filtering scenarios [10].
However, while Gaussian-based approximation of the event-
based posterior has been investigated extensively, application
of non-Gaussian filtering using particle filters [25]–[28] is
still in its infancy. To the best of our knowledge, only very
recently, EBE using non-Gaussian particle filter approximation
is considered in [11] and [12], where in the latter simply the
number of particles belonging to the triggering set is used
to update particle weights, while the former uses stochastic
triggering [19] which results in having a Gaussian posterior.
The paper addresses this gap. In particular, the paper proposes
a systematic and intuitively pleasing mechanism to jointly
incorporate point and set-valued measurements within the
particle filter framework. More specifically, we capitalize on
the fact that in particle filtering framework the observations’s
nature (being point or set-valued) will mainly affect the likeli-
hood function which is used to update each particle’s weight.
In presence of an observation (point-valued measurements),
the likelihood function can exactly be evaluated for each
particle. In absence of an observation (set-valued measurement
case), the proposed EBPF evaluates the probability that the
unknown observation belongs to the event-triggering set based
on its particles which is then used to update the corresponding
particle weights. Intuitively speaking, the proposed EBPF
utilizes the set-valued information similar in nature to the way
that particle filter utilizes quantized observations [29]–[31].
In other words, point-valued measurements are incorporated
in the estimation via a conventional particle filter while set-
valued measurements are incorporated in the state estimates
using a filter similar in nature to quantized particle filter.

The rest of the paper is organized as follows: Section II
formulates the event-based estimation problem. In Section III,
we introduce the proposed EBPF framework. Simulation re-
sults are provided in Section IV. Finally Section V concludes
the paper.

II. PROBLEM FORMULATION

We consider an estimation problem represented by the
following linear state-space model

x
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2 Rn
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are mutually uncorrelated white
Gaussian noises with covariances Q
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We consider a distributed estimation architecture (Fig. 1)
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which recursively update the posterior distribution P (x
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based on the collective set of observations Z
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received up to and including the current iteration (k). By
considering the state-space model given by Eqs. (1)-(2) and
its statistical properties, the posterior follows a Gaussian
distribution, i.e., P (x
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While the sensor has limited power sources, the FC has
adequate power to perform complex estimation algorithms.
In the event-based communication/fusion framework, after
making each measurement the sensor decides on keeping or
sending its observation to the remote estimator. The local
decisions are governed by a binary triggering criteria denoted
by �

k

which is defined as follows
⇢

�

k

= 1 : Event occurs, communication is triggered.
�

k

= 0 : Idle case, no communication.

Based on the above triggering mechanism, the collective set
of observations up to and including iteration k at the FC is
defined as ˜Z

k

= {�1z1, . . . , �kzk}. When the event-triggering
condition is satisfied (i.e., �

k

= 1), the exact value of the sen-
sor measurement z

k

is known at the FC, referred to as “point-
valued observation information”. On the other hand, when
the event-triggering condition is violated (i.e., �

k

= 0), some
information contained in the event-triggering sets is known to
the estimator instead, referred to as “set-valued information”.
The main issue here comes from the non-Gaussianity of the a
posteriori distribution due to joint incorporation of point and
set-valued measurements, i.e., P (x| ˜Z

k

) no longer follows a
Gaussian distribution. Next, we present the proposed EBPF
implementation which systematically uses point and set-valued
observation to perform the estimation task.
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III. THE PROPOSED EBPF FRAMEWORK

In the proposed EBPF framework, the remote estimator
at the FC computes the state estimate based on the event-
triggered measurements it receives from the remote sensor.
Without loss of generality and for simplicity of the presen-
tation, we consider the practical “send on delta” triggering
criteria/condition [22]. In an open-loop scenario, in order
to decide whether or not to send new measurements, the
sensor computes the distance between its current measurement
and the previously transmitted measurement based on the
following event-triggering schedule

�

k

=

⇢
1, if |z

k

� z
⌧

k

| � �

0, otherwise, , (8)

where ⌧

k

denotes the time of last communication from the
sensor to the FC, and � denotes the triggering threshold.
Based on the above triggering mechanism, we define the
hybrid observation vector as Y
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As stated previously, the posterior distribution P (x
k

|Y
k

)

based on collective set of hybrid observations is no longer
Gaussian, eliminating the application of linear filters such as
the KF. In such a non-Gaussian scenario, the optimal Bayesian
filtering recursion for iteration k is given by
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In order to compute the non-Gaussian posterior distribution
given by Eq. (9) jointly based on point and set-valued mea-
surements, we develop the EBPF which approximates the fil-
tering distribution P (x
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by the filter. The EBPF implements the filtering recursions
by propagating the particles Xi

k

and associated weights W

i

k

,
(1  i  N

s

), as follows

Xi

k

⇠ q(Xi

k

|Xi

k�1,Yk�1) (11)

W

i

k

/ W

i

k�1

P (y
k

|Xi

k

)P (Xi

k

|Xi

k�1)

q(Xi

k

|Xi

k�1,Yk

)

. (12)

Consequently, the EBPF computes a particle-based approxi-
mation of the conditional posterior p(x
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) as
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The minimum mean square error (MMSE) estimate at iteration
(k � 1) is defined as the expected value of the posterior
distribution p(x
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}. The EBPF computes the

state estimate and its associated covariance matrix based on
the particles as follows
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The required terms for computing Eqs. (11)-(15) at each
iteration is the particle set {X(i)

k

,W

(i)
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} for which we need
to define the proposal distribution and form P (y
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) to
compute the weight equation. The EBPF generates N

s

random
particles from the transitional density, i.e., X(i)
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which is considered as the conventional choice for the pro-
posal distribution (q(Xi
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)). Choice of the transitional
density as the proposal results in the weight update equation
(Eq. (12)) to become
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The second step to implement EBPF is to evaluate the weight
update equation which depends on whether or not the current
sensor measurement has been communicated.

(i) Update based on Set-valued Measurements (�
k

= 0): In the
absence of the sensor measurement and based on the triggering
mechanism defined in Eq. (8), the estimator has the following
side information
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case, the likelihood function can be specified as follows
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Note that in the third line of Eq. (19), we kept the noise in the
middle and moved other terms to the sides in order to be able
to compute the likelihood function based on the probability
distribution of the noise. As the observation noise v
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has a
zero-mean Gaussian distribution with variance R
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, i.e., z
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where �(·) is the cumulative Gaussian distribution with zero
mean and variance 1 as follows

�(x) =

1p
2⇡

Z 1

x

exp

�
� t

2

2

�
dt. (21)
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Algorithm 1 EBPF IMPLEMENTATION

Input: {X(i)
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.
Output: {X(i)
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At iteration k, EBPF updates its particle set as follows:

S1. Predictive Particle Generation: Sample predicted particle
from the proposal distribution i.e., X(i)
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S2. Hybrid Likelihood Computation:
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k

|X(i)
k

) using Eq. (20).
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= 1: Compute P (y
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) using Eq. (22).
S3. Weight Update: Compute the weights associated with X(i)
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using Eq. (16).
S4. State Estimates: Approximate the state estimate and its

corresponding error covariance P
k|k from {X(i)
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using Eqs. (14)-(15).

S5. Resampling: In case of degeneracy, particles using the
replacement approach [32].

This completes the computation of the likelihood function in
idle scenarios (no transmission).

(ii) Update based on Point Measurements (�
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this case, the estimator receives the sensor measurement z
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,
therefore, the hybrid likelihood function P (y
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the sensor likelihood function P (z
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hybrid likelihood function is given by

P (y
k

|x
k

, �

k

= 1) = P (z
k

|x
k

) = �

✓
z
k

�H
k

x
kp

R

k

◆
. (22)

This complete the presentation of the proposed EBPF. Algo-
rithm 1 outlines the steps of the EBPF implementation.

IV. SIMULATIONS

In this section, simulation experiments are developed to
evaluate the performance of the proposed EBPF. Following
the recent literature on event-based estimation [5], a target
tracking problem is considered where observations from a
sensor are used to sequentially estimate the state of the target
denoted by x

k

consisting of its position and speed. Target’s

dynamic is given by x
k

=
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, where
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. The sensor periodically

measures the position and speed of the target based on the
following observation model z
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=

⇥
0.7 0.6

⇤
x
k

+ v

k

. In
this experiment, the observation noise variance is �

2
v

= 0.01.
The following results are computed over Monte-Carlo (MC)
simulations of 1000 runs. The object’s position and speed
used in each simulation run changes randomly to provide
a fair experimental benchmark. Furthermore, the following
four estimators are implemented and compared for accuracy:
(i) The full-rate estimation based on KF where the sensor
communicates its observation to the remote estimator every
iteration; (ii) The full-rate estimation based on particle filter;
(iii) Open-loop and event-based KF, where SOD triggering
is used, and; (iii) The proposed open-loop and event-based
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Fig. 2. The MSE comparison when � = 1.2. (a) Position MSE. (b) Velocity
MSE.
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Fig. 3. Position MSE comparison over different values of �.

estimation algorithm developed in Section III, where the
triggering decisions at the sensor level are made based on
SOD mechanism and the fusion is performed by jointly
incorporating set-valued and point-valued measurements based
on the proposed EBPF.

Fig. 2 illustrates the estimated mean-square errors (MSE)
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obtained from the four implemented filters. In this experiment,
the value of � is set equal to 1.2. In this low communication
rate scenario, it is observed that the proposed EBPF algorithm
provides acceptable results and closely follows its full-rate
counterparts and shows significant improvements in compar-
ison to its KF-based counterpart. Fig. 3, shows the position
MSE plots over varying values of � which in turn results in
varying values of the communication rate. It is observed that
the proposed EBPF algorithm provides acceptable results in
very low communication rates (high values of �) and closely
follows its full-rate counterparts in high communication rates.
Besides, when the communication rate increases (i.e., small
values for �), the proposed event-based methodology ap-
proaches the full-rate estimator. Finally, it is observed that
the proposed EBPF provides significantly superior results in
comparison to its KF-based counterpart.

V. CONCLUSION

In this paper we proposed an event-based particle filter
(EBPF) framework for distributed state estimation in systems
with communication/power constraints at the sensor side. An
event-based and open-loop estimation architecture (i.e., no
feedback communication is incorporated from the FC to local
sensors) is considered. Local sensor uses practical send-on-
delta (SOD) event triggering mechanism resulting in availabil-
ity of side information at the fusion Centre (FC) in the absence
of an observation. Utilization of this side information results
in estimation with joint set-valued and point-valued measure-
ments which consequently translates in to a non-Gaussian state
estimation problem. The proposed EBPF is a systematic and
intuitively pleasing non-Gaussian estimation algorithm which
jointly incorporates point and set-valued measurements within
the particle filter framework by capitalizing on the fact that
particle filters only require new measurements to evaluate the
likelihood function during the weight update step. In presence
of an observation (point-valued measurement), the likelihood
function can exactly be evaluated for each particle. In the ab-
sence of an observation, the likelihood becomes the probability
that the observation belongs to the triggering set which is
derived in the paper to utilize set-valued measurements in the
proposed EBPF framework. The simulation results depicts that
the proposed EBPF outperforms its counterparts specifically in
low communication rates, and also confirms the effectiveness
of the proposed nonlinear estimation based on joint point and
set-valued measurements.
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