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Abstract—Zoologists have long studied species distinctions, but
until recently a quantitative system which could be applied to all
birds which satisfies rigor and repeatability was absent from the
zoology literature. A system which uses morphology, acoustic and
plumage evidence to review species status of bird populations was
presented by Tobias et al. The acoustic evidence in that work was
extracted using manual inspection of spectrograms. The current
work seeks to automate this process. Signal processing techniques
are employed in this paper to automate the extraction of the
acoustic features: maximum, minimum and peak frequency, and
bandwidth. YIN-bird, a pitch detection algorithm optimized for
birds, and sine-track method, successfully applied to bird species
recognition previously, are the automatic methods employed. The
performance of automatic methods is compared to the manual
method currently used by zoologists. Both methods are well suited
to this task, and demonstrate the strong potential to begin to
automate the task of acoustic comparison of bird species.

Index Terms: Pitch, bird song, sinusoidal tracking

I. INTRODUCTION
Conservation concerns have motivated the increased study

of the geographic distribution of bird species. As most bird
vocalizations have evolved to be species-specific, it is a natural
and adequate way to automatically identify or discriminate
between species [1]. Another common issue in ornithology
is to determine how similar, or different, vocalizations from
subspecies of a single bird species are. This has important
implications for the correct taxonomic classification of pop-
ulations. Groups of birds considered as the same species,
but as different subspecies, will typically have more similar
vocalizations than groups of birds considered as unrelated
species. The task of classifying subspecies is more complex
than species classification as classes are more confusable.
Whilst ornithologists will use a combination of genetic and
morphological evidence (e.g. plumage patterns) to help them
in this task [2], the usefulness of vocalizations is also now
strongly accepted. Systematic ways to quantify difference
between groups of birds using their vocalizations is thus
desirable for ornithologists.

Populations of a bird species can evolve over time to
become new species. While plumage patterns and other mor-
phological information can remain constant, the vocalizations
of a given population may have diversified enough to warrant
reclassification. McKay et al. in [3] examined song in making
a case for the Bahan subspecies of the Yellow-throated Warbler
to be reclassified as a distinct species. Song divergence was

important evidence in the reclassification process. Compar-
isons were on the basis of visual inspection of spectrograms.
Sangster et al. in [4], described a new species, the Rinjani
Scops Owl, based on analysis of vocalizations. In both [3] and
[4] various features were measured, like amplitudes at certain
frequencies, number of syllables and phrases, pitch slope and
frequency.

Whilst the importance of vocalizations in mate choice and
species recognition is well documented (specifically by Catch-
pole et al. in [5]), quantitative systems to evaluate difference
are few and far between. The task of bird population difference
analysis using vocalizations is relatively uncharted with only
a few papers to date [2], [4], [6], [7]. If two populations
with a common origin are isolated, one can expect that the
songs of each will accumulate modifications independently.
In recent times, due to cheaper access to recording equipment
and large on-line repositories of data (e.g. xenocanto.org) it
has become plausible for ornithologists to have large numbers
of recordings to analyze. Thus automatic ways to analyze and
quantify vocalizations from different populations are required.

When zoologists analyze bird populations, they tend to look
at acoustic evidence in specific ways. This paper investigates
the automation of a taxonomic scoring system presented by
zoologist Joseph Tobias et al. in [8]. The authors proposed
a simple point-based system where the difference between
population pairs is scored according to four degrees of magni-
tude: minor, medium, major and exceptional. A system where
difference is classed like this is quite attractive to engineers
and zoologists as it quantifies difference which leads to auto-
matic species/subspecies decision making. Previous standard
approaches in ornithology to bird song analysis were laborious,
subjective and sometimes lacked repeatability. Tobias et al.’s
system addressed these concerns. The acoustic evidence in
[8] was collected by visual inspection of spectrograms using
on-screen cursors. The goal of this paper is to automatically
extract the spectral features used in [8], to offer ornithologists a
consistent, repeatable way to measure features in vocalizations
to compare populations. Section II gives a brief description
of species delimitation system from [8], focusing on acoustic
evidence. Section II-B describes YIN-bird feature extraction
and section II-C outlines a sine tracking method. Experiments
and results are explained in section III and finally a discussion
is given in section IV.
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TABLE I: Procedure for scoring species pair difference from
[8]. If total ≥ 7, species status is assigned.

Magnitude Total

Trait Features Min (1) Med (2) Maj (3) Excep (4) Score

1. Morphology Strongest
increase

Effect
size:

Effect
size:

Effect
size:

Effect
size: 1-4

(biometrics) & decrease 0.2-2 2-5 5-10 >10

2. Acoustic Strongest
temporal

Effect
size:

Effect
size:

Effect
size:

Effect
size: 1-4

& spectral 0.2-2 2-5 5-10 >10

3. Plumage 3 strongest Slight diff Distinct
diff

Contrast-
ingly

Radically
diff 1-4

in wash in tone diff in hue colloration

If sum ≥ 7; species

II. SPECIES DELIMITATION
Many decisions on avian taxonomy made decades ago are

now being contested, with species lists subject to review [8].
While biodiversity can be divided into a range of categories
from genes to ecosystems, it is the species category that
underpins much of biology, ecology and conservation [9].
Species are crucial to conservationists and policy-makers, who
use them as units for prioritizing action and formulating law,
and who therefore require species delimitation to be consistent
and transparent [8]. Reclassification of any bird is a task
which requires many characteristics to be examined such as
morphological and genetic differences. The distinctiveness of
their song is equally important and why bird song is so crucial
to biodiversity studies.

To better understand bird song analysis, engineers must
take a glimpse into how zoologists study bird population
differences. One of the largest studies of its kind was reported
by Tobias et al. in [8]. Tobias et al. gave a detailed account of
bird population differences. Divergence of different trait types:
morphological, voice, and biometrics were summed, and if
the total score was ≥ 7, a pair of subgroups were considered
different species. Subgroups can be two subspecies or species.
Upon review of their analysis with this system, a subgroup’s
taxonomy may change between subspecies and species. This
system is summarized in Table I (for a deeper explanation, see
[8]). An example is useful to illustrate. The total score when
comparing two populations of ‘Arremon’ was 14. Total score
added 2; strongest morphology feature (Tarsus) with a medium
difference 2; strongest temporal feature (duration) with a
medium difference 3; strongest spectral feature (min freq) with
major difference 3; for 1st plumage of major difference (color
- midcrown to nape) 2; for 2nd plumage of medium difference
(color - supraloral) 2; for 3rd plumage of medium difference
(color - supercilium), which summed to 14.

The goal of this paper is to automate the extraction of
acoustic features from [8] using YIN-bird pitch extraction [10]
and sinusoidal tracking [11], as current practices by zoologists
requires manual inspection of spectrograms which is laborious
and subjective.

A. Acoustic evidence

This section contains information relevant to the system
from [8]. Only the acoustic evidence measure is investigated
in this paper. For more information on morphological and
plumage the reader is directed again to [8]. Song was used

rather than calls, as song tends to function in mate choice
and hence reproduction isolation in birds [12]. Song refers
to territorial or advertising signals and these are generally
identifiable by their complexity or stereotypy in relation to
alarm or contact calls. Four spectral features were used as
part of the vocal evidence. The features extracted from the
recordings were as follows:

1) maximum frequency
2) minimum frequency
3) bandwidth (max - min)
4) peak frequency (mean pitch value)
These frequency measurements were taken from the promi-

nent frequency partial, which is fundamental frequency for
most cases. In rare cases where fundamental frequency is
missing, the prominent partial is analyzed instead. Bandwidth
refers to the bandwidth of the pitch and not the bandwidth of
all harmonics present, as number of harmonics present in a
recording can vary due to recording conditions.

Once the data was selected for taxa comparisons and
features were extracted, the mean and standard deviation was
converted to effect size for each feature using Cohen’s d
statistics. Cohen’s d statistic is often used for effect size,
which combines a measure of the degree of a difference with
a measure of precision [8]. Cohen’s d was calculated as

d =
x̄1 − x̄2
spooled

(1)

where x̄ = mean of subgroup 1 and 2, s = std dev, and

spooled =

√
(n1 − 1)s21 + (n2 − 1)s22

(n1 + n2 − 2)
(2)

where n = no. of individuals sampled in subgroups 1 and 2.1

Upon building distributions of effect sizes produced by
empirical tests of divergence in undisputed species (see Results
Section in [8]), vocal differences were scored with an effect
size of 0.2 − 2 as minor, 2 − 5 as medium, 5 − 10 as major
and > 10 as exceptional. This approach assumes that one can
calibrate the significance of effect size differences according
to divergence measured across a sample of known species. As
the acoustic features are heavily correlated, only the strongest
spectral feature was used in the acoustic similarity measure
in [8]. The feature with largest absolute Cohen’s d value was
selected as the strongest spectral feature to use for each pair.
Please note that in [8] temporal features (duration of song,
number of notes and pace) were also used but this paper
concentrates on extracting the spectral features.

B. YIN-bird feature extraction

YIN-bird [10] is a pitch extraction algorithm based on the
original YIN [13], but optimized for bird vocalizations. YIN-
bird uses spectrogram information to adaptively update the
minimum frequency parameter for YIN based on identifying

1Note in [8] the −2 was omitted from the equation but including −2 gave
the results presented in supplementary material with [8].
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a prominent frequency region on a segment by segment basis
within a recording. This prevents octave errors which are
frequently observed using original YIN for birdsong. Thus if
the fundamental is weak or missing, YIN-bird will track pitch
as the prominent harmonic instead.

Note it was not disclosed in [8] if unvoiced vocalization
frequencies were taken into account but for the most part song
tended to be melodic and made up purely of voiced instances
for the dataset. Therefore the inclusion/exclusion of unvoiced
incidences would have little influence on overall mean and
variance frequency measures.

The minimum and maximum frequency was selected from
YIN-bird’s pitch contour output. The peak frequency was
calculated by taking the average pitch of YIN-bird’s output,
i.e. mean of pitch or mean of prominent frequency partial in
a minority of cases. The bandwidth per song was calculated
by subtracting the minimum frequency from the maximum
frequency output from YIN-bird. These four spectral features
were collected for each song sample. The mean and standard
deviation of these features were then calculated.

C. Sinusoidal tracking feature extraction

We employed the sinusoidal detection algorithm introduced
by Jančovič et al. in [14], which was used in a number
of works on analysis of bird vocalisations and bird species
recognition, e.g., [11], [15], [16]. This method performs the
detection in the short-time spectral domain. Each peak in
the magnitude spectrum of signal frame is considered as a
potential sinusoidal component. The decision whether a peak
corresponds to a sinusoidal signal or not is based on the
maximum likelihood criterion, i.e., the peak is detected as
a sinusoid if p(y|λs)>p(y|λn), where y is a feature vector
consisting of magnitude and phase spectral features extracted
around the peak, and λn and λs are trained models of
noise and sinusoidal signals, respectively. Sinusoidal models
were trained using simulated sinusoids with a range of linear
frequency modulation. The outcome of detection is a set of
isolated time-frequency segments, each segment corresponding
to a temporal evolution of a sinusoidal component. The initial
segmentation was further refined by discarding very short
segments and segments of a low energy. In a case of temporal
overlap of segments, only the higher energy segment was used.

III. EXPERIMENTS

The acoustic data in [8] contained recordings from 54
closely related congeneric species pairs. A detailed list of
recordings for these species was given in supplementary
material (‘IBI 1051 sm AppendixS2-10.xls’ - link available
at [17]), along with their source library location. Final samples
contained songs from 2 to 10 individuals per species, with
1 to 10 songs per individual. Where there was much intra-
and inter-individual variation (as in many oscine species)
at least six individuals per species were sampled, and at
least six songs per individual. Multiple songs were often
analyzed from the same recording. Recordings were taken
from commercially available CDs, the Cornell Laboratory

of Ornithology Macaulay Library [18], xeno-cant.org and
the British Sound Archive [19]. The authors were contacted
about sharing the final samples, but regrettably they were
not available. However, the details contained in the list of
recordings allowed the majority of recordings to be acquired
independently. Not all of the recordings used in [8] were used
here, but all of the recordings used in this paper were used
previously.

A. Expert labeling of data using Praat

Recordings were manually segmented by a zoologist expert
in bird song. As time was limited and this is an extremely time-
consuming task, it was not possible to fully segment every file.
As some files contained multiple bouts of song, there is no
absolute guarantee that the songs selected by Tobias et al. are
identical to the songs selected in this work. However it can
be assumed with a high degree of confidence that labels are
accurate. The software used for this process was Praat [20].
The segmentation was saved as a textgrid file. Thus each wave
file has its own corresponding textgrid annotation file.

The majority of files contained vocalizations of target birds
in the foreground, with non-target birds faintly observed in
the background. A screenshot of Praat can be seen in Figure
1 showing a single bout of song from Regulus regulus, with
song, phrase, syllable and element levels fully annotated. Note
a faint call from a non-target bird is observed and labeled on
the “Other Species” tier. The main tier of interest for this paper
is the top tier ‘Bird.A’, which contains song level annotation.
Labels for this tier were either song, incomplete song, false
start or call. The other tiers are useful to future work.

Fig. 1: Regulus regulus screenshot Praat showing time (top)
and frequency (middle) domain information along with com-
prehensive labeling of boundaries (bottom).

B. Results

Bouts of song were segmented from longer wave files
in Matlab using the textgrid labeling files. This meant that
between 15 and 200 songs were analyzed per species pair,
with an average of 70 songs. Only the number of individuals
was given in the original work. YIN-bird and sine tracking
were both applied and the spectral features extracted from both
as described in Sections II-B and II-C. The extracted spectral
features were combined with temporal acoustic features given
in supplementary material of [8] to yield the overall vocal
score. A summary of how well the resulting vocal scores
calculated by automatic means matched the score manually
calculated by Tobias et al. is presented in Figure 2.
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TABLE II: A comparison of results obtained using the methods of Tobias et al. (Tob), YIN-bird by O’Reilly et al. (YINb) and
Sine Tracking by Jančovič et al. (SineT), to calculate spectral features. Difference description (Diff) corresponds to : Minor
(Min) 0.2-2, Medium (Med) 2-5, Major (Maj) 5-10 or Exceptional (Excep) > 10.

Details Mean of features (kHz) Counts St. dev of features (kHz) Cohen’s d Vocal
Method Pair Genus Species Max Min Peak BW Bird Song Max Min Peak BW Max Min Peak BW Diff Score

Tob 5 Arremon brunneinuchus 10.84 6.20 9.48 4.64 4 N/A 0.37 0.70 0.44 0.42 -0.78 5.65 4.18 -4.29 Maj 5
Tob Arremon torquatus 11.39 2.98 6.86 8.40 3 N/A 1.01 0.28 0.83 1.29

YINb 5 Arremon brunneinuchus 10.35 7.31 9.08 3.05 4 28 0.39 0.46 0.40 0.41 0.86 6.74 5.86 -3.04 Maj 5
YINb Arremon torquatus 9.64 3.55 6.49 6.10 3 41 1.21 0.68 0.51 1.51
SineT 5 Arremon brunneinuchus 10.29 7.61 9.20 2.68 4 28 0.43 0.55 0.45 0.45 1.50 5.41 2.55 -2.94 Maj 5
SineT Arremon torquatus 9.17 3.58 7.10 5.59 3 41 1.06 0.96 1.19 1.46
Tob 44 Regulus ignicapillus 8.85 4.30 7.21 4.55 3 N/A 0.45 1.23 0.30 1.21 -0.62 0.12 -0.45 -0.40 Min 2
Tob Regulus regulus 9.24 4.15 7.31 5.09 3 N/A 0.76 1.30 0.13 1.45

YINb 44 Regulus ignicapillus 8.34 6.38 7.45 1.96 3 35 0.40 0.41 0.19 0.73 0.94 1.96 2.18 -1.29 Med 3
YINb Regulus regulus 8.00 4.91 7.00 3.09 3 27 0.32 0.98 0.18 1.00
SineT 44 Regulus ignicapillus 8.45 6.43 7.54 2.02 3 35 0.40 0.48 0.29 0.76 1.40 1.96 1.12 -1.21 Min 2
SineT Regulus regulus 7.97 5.01 6.90 2.96 3 27 0.27 0.90 0.74 0.79

Fig. 2: Bar chart shows vocal scores from Tob (navy), YINb
(green), SineT (yellow) measured on the left y-axis. Total
scores are given by markers using the right y-axis.

IV. DISCUSSION
Figure 2 shows vocal scores (VS) from [8] (label Tob,

navy bars), vocal scores calculated using features extracted
by YIN-bird (label YINb, green bars), and vocal scores
calculated using features extracted by Sine Tracking (label
SineT, yellow bars) measured on the left y-axis. The x-axis
contains each pair’s genus name, preceded by its reference
number (1-58) from [8]. This allows direct reference back
to the original work. Biometric and plumage scores from
supplementary material were combined with vocal scores to
aggregate total scores (TS). TS using Tob are plotted with
blue triangular markers using the y-axis to the right. TS
using YINb and SineT are plotted with green and yellow
markers respectively. TS (morphology + acoustic + plumage
evidence) are included in Figure 2 to show how vocal evidence
influences the final difference score using the system from
[8]. In [8], there was no biometric data available for genus
19 ‘Herpsilochums’ hence it does not have a TS plotted in
Figure 2. Species status is maintained if the TS is ≥ 7. All
these pairs maintain species status using all methods which
suggests automatic methods adequately agree with Tob VS
difference. Circumstances where other evidence sums to 4,
VS of 3 will maintain species status, while VS of 2 means
pairs are considered subspecies. Here a variation in VS by ±
1 is critical to a pairs’ evaluation.

6 of 11 pairs had the same vocal score using all 3 methods
of feature extraction. When using YINb, 7 of 11 pairs had the

same score as Tob. For SineT, 9 of 11 pairs obtained the same
score as Tobias et al. Vocal scores from all pairs were within
±1 between feature extraction methods. 3 of 11 pairs had the
same strongest feature using Tob, YINb and SineT methods.
For YINb, 5 of 11 pairs had the same strongest spectral feature
as Tob. For SineT, 3 of 11 pairs had the same strongest spectral
feature as Tob. From the point of view of calculating TS for
species status, degree of difference is more important than
which spectral feature is used, nonetheless the strongest feature
to use should ideally not change between feature extraction
method.

Fig. 3: Song of Regulus ignicapillus with pitch estimate from
YINb and SineT superimposed. The mean minimum fre-
quency, of all ignicapillus song examples, using the methods
of Tob (orange), YINb (green) and SineT (red).

A selection of scores are examined in more detail in Table
II. The first column, ‘Method’, states which method was used
to extract the frequency features. The next group of columns,
‘Details’, contains the pair number from [8], which directly
relates to the bird genus and species in the original work.
The adjacent columns, ‘Mean of features’, gives the average
feature value per taxa population for ‘Maximum frequency’
(Max), ‘Minimum frequency’ (Min), ‘Peak frequency’ (Peak),
and ‘Bandwidth’ (BW). The next set of columns, ‘Sample
Size’, contains a column for, ‘Bird Count’ (number of different
birds recorded for a given taxa), and ‘Song Count’ (number of
songs analyzed per taxa). The next group of cells, ‘St. dev of
features’, give the standard deviation of these features. Cohen’s
d statistics were calculated on a pair by pair basis using the
method described in Section II-A. The Cohen’s d values for
spectral features, maximum, minimum, peak and bandwidth
frequencies, are highlighted in green with strongest in bold
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green.
Pair 5, ‘Arremon’ obtained vocal difference scores which

agree across all three feature extraction methods. The strongest
feature is minimum frequency for all methods. The mean
and standard deviation values of features, for both Arremon
populations, occur within a similar range which demonstrates
that the use of automatic feature extraction methods produces
the same finding as manual inspection analysis. Pair 44, ‘Reg-
ulus’ presents feature values that do not agree across methods.
Mean minimum frequency values for Regulus ignicapillus
were 4.30 (Tob), 6.38 (YINb) and 6.43 (SineT) kHz. The
mean minimum frequency for Regulus regulus were 4.15, 4.91
and 5.01 kHz. Both the automatic methods output a higher
minimum frequency value than Tobias et al. An example of
song from Regulus ignicapillus in shown in Figure 3. The
song of Regulus contains rapid rising pitch modulations which
appear stretched on a spectrogram even at high resolution. The
true pitch may minimize at 5 or 6 kHz but due to its slope,
appears as a dark blur with edges at 4.30 or 4.15 kHz on
a spectrogram which may explain the discrepancy in values.
YINb and SineT pitch are superimposed along with lines
describing the population mean minimum frequency found by
Tob, YINb and SineT methods. The two automatic methods
give a higher mean minimum frequency than observed when
manually inspecting the spectrogram. Both interpretations are
fair, but from a signal processing point of view the true pitch
calculated is more objective than how song appears on a spec-
trogram. Standardization of feature extraction requirements are
necessary for future use of this system.

The feature with the strongest Cohen’s d values also
disagrees. Minor difference based on maximum frequency
was found by Tob, medium difference using peak frequency
was found using YINb and minor difference using minimum
frequency was found by SineT. These inconsistencies are most
likely due to the difficulty of tracking of syllables present in
some examples of Regulus ignicapillus.

The pairs excluded from Table II but included in Figure
2 have features values which predominantly agree across
different extraction methods. These difficult ones were chosen
for discussion.

V. CONCLUSION

For simple whistles, automatic pitch extraction methods
such as YIN-bird and Sine Tracking work very effectively and
can greatly benefit zoologists in their analysis. For complex
syllables and song it is not as straight forward to extract
bird features without the knowledge and supervision of expert
listeners who can tell the difference between signature high
pitch song and harmonics with F0 attenuated or missing due
to environmental filtering for a given recording.

YIN-bird and Sine Tracking are both sufficient for the
task here, with Sine Tracking values slightly more consistent
with Tobias et al. A deeper comparison between YIN-bird
and Sine Tracking performance on bird song pitch extraction
would be an interesting study for future work. The results of
experiments here suggest that the difference measure used by

Tobias et al. is repeatable using some automatic means. If this
system could be fully automated by engineers, it would remove
subjectivity when making vocal comparisons while also saving
zoologists time by removing the need to visually inspect every
spectrogram.
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