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Abstract—This paper deals with the sub-Nyquist sampling
of analog multiband signals. The Modulated Wideband Con-
verter (MWC) is a promising compressive sensing architecture,
foreseen to be able to break the usual compromise between
bandwidth, noise figure and energy consumption of Analog-to-
Digital Converters. The pseudorandom code sequences yielding
the sensing matrix are yet the bottleneck of it. Our contributions
are multifold: first, a proposal of a new Zadoff-Chu code based
real-valued sensing matrix that satisfies cyclic properties and
good spectral properties and increases robustness against noise.
Second, a quasi systematic study of the influence of code families
and of row selection is carried out on different criteria. Especially,
the influence on the coherence, vital to limit the number of
branches, is investigated. Additionally, an original approach
that focuses on evaluating isometric properties is established.
These measures are helpful since isometry is essential to noise
robustness. Third, the relevance of previous high-level metrics
is validated on various codes thanks to a simulation platform.
Altogether this study delivers a methodology for a thorough
comparison between usual compressive sensing matrices and new
proposals.

I. INTRODUCTION

A. The Modulated Wideband Converter (MWC)

Compressive sensing is a paradigm shift introduced in
2006 by [1] which goes beyond the Nyquist criteria. Given
that there is a basis in which few coefficients suffice to
represent the signal, the idea is to measure just the essential
information instead of acquiring redundancies at Nyquist rate.
Recovery is made possible by this sparsity assumption if we
succeed in creating enough diversity between the measures.
Random demodulators are among the most popular “Analog-
to-Information Converters” to date and in particular the Modu-
lated Wideband Converter (MWC) introduced by Mishali [2].
As can be seen on Fig. 1 the principle of a MWC is to multiply
the K-sparse (K active frequency subbands) input signal in
each of the M parallel branches with functions based on codes.
For each branch i ∈ {1, ...,M}, the mixing function pi(t) is
Tp-periodic and consists, within each period, in a code ci,.
of N elements, shaped with rectangular chip pulses. MWC
parameters verify N.fp = 2.fmax where fmax is the upper
bound of the analyzed frequency span and fp = 1/Tp. The
spectrum is thus convolved with a fp-spaced Dirac comb
so that each band is weighted by the corresponding Fourier
coefficient of the code and the whole spectrum is aliased at
baseband. The last step consists in low-pass filtering (h(t)

Fig. 1: Sensing process of the MWC.

on Fig. 1) with cut-off frequency fc = 1/2.Ts and uniform
sampling at fs (by default fs = 1/Ts = fp).

Codes are crucial as they give the coefficients of the output
mixture. Up to our knowledge, selecting a code from a set of
required properties has not yet been studied methodologically
in an exhaustive way. In this paper, some key properties serve
as a cornerstone for selecting suitable codes: orthogonality,
correlations and norm preservation. The interest of our study
lies in proposing evaluation criteria, illustrated through exam-
ples and simulations.

B. State-of-the-art of the mixing codes

Most publications ([1],[3],[4]) stay on the theoretical level
and use random codes, generated by independent and iden-
tically distributed (i.i.d.) processes with e.g. Gaussian or
Bernoulli probability density function. Typically, following
codes are implemented: a random Bernoulli operator [2]
requiring M.N flip-flops or Gold sequences [5] with N of
the form 2n − 1 (n ∈ N). Circulant matrices generated in the
frequency domain from a maximal or Legendre sequence also
promise some benefits [6] but require complex implementa-
tion.

Because they run at the Nyquist rate, those codes represent
most of the energy consumption of the MWC [7]. Another
imperative is the limitation of the number of branches M
in order to minimize consumption and die area. But fewer
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measurements means that if the code has bad properties (see
Sect. II-A on coherence), the highest sparsity degree K that
the MWC can handle is quickly limited. In other words, for
a given sparsity level K, the required number of branches
increases if the mixing codes are not able to gather as much
information as possible about the input signal in one measure.
For Gaussian matrices, [7] shows that:

M ≥ 2ρK log

(
N

4K

)
, (1)

where ρ depends on the code. Several solutions to overcome
this limitation are mentioned in the literature, including seri-
alized [8] or collapsed architectures [2].

In this context circulant matrices C arose interest regarding
codes as they are also easy to generate and exist for every M.
As represented in (2) they can be defined by a shift of the N
elements of the first branch’s code c in the time domain p1(t)
or by the diagonal σk∈{1,...,N} in the frequency domain [9]:

C =

cN cN−1 . . . c1
c1 cN . . . c2

. . . . . . . . .
...

cN−1 cN−2 . . . cN





temporal code in the first branch

= F−1

σ1 0 0

0
. . . 0

0 0 σN

F, (2)

where F is the Discrete Fourier Transform (DFT) matrix. The
code c is then the inverse DFT (IDFT) of the sequence σσσ [10].

The authors in [4] compared random phase circulant matri-
ces to random matrices for signal sparse in usual bases and a
selection of M rows among N that is random or deterministic.
They found no significant differences with usual sparse signals
thus suggesting less randomness would suffice as well. Fur-
thermore, the authors in [10] point out that randomly sampled
deterministic sensing matrices generated from the inverse DFT
of an unimodular sequence σσσ with perfect (or nearly perfect in
a certain extent) autocorrelation guarantee, for signals sparse
in time or frequency, better recovery than random filters, which
target no specific sparsity domain. Universality guarantees are
a common target in compressive sensing but this proves that
there might be better options if we have knowledge of the
sparsity domain.

One instance of such unimodular perfect codes are Zadoff-
Chu codes. The IDFT of a Zadoff-Chu code with prime
length is also a Zadoff-Chu code so both temporal and
frequency definition would lead to the same matrice structure,
which verifies the hypothesis in [10]. Zadoff-Chu sequences
are complex-valued and constant envelope codes known in
communications for synchronization in Long-Term Evolution
(LTE) mobile communications systems due to their perfect
cyclic autocorrelation function. They are defined by:

ZCR[k] = e−jπRk(k−1)/N ,

for k = {1, . . . , N}, R prime to N
(3)

As they have constant amplitude but varying phase, they
simultaneously preserve the Power Spectral Density and create

diversity in the projection. The architecture proposed in [11]
and [12] uses randomly sampled complex circulant Zadoff-
Chu codes. The study showed one promising simulation result
([11], Fig. 4.6), however it lacks a detailled high level metric
analysis. They only argue that the RIP criterion (see Sect.
III) of the sensing matrix will be the same as that from the
selection matrix operator.

As a last remark, we want to point out that if we respect a
simple symmetry condition [13] on the elements σk∈{1,...,N}
of a circulant matrix, we can generate a real circulant matrix
which is of main interest compared to [6]:

k = {1; N
2

+ 1} σk = ±1with equ. prop.

2 ≤ k < N

2
+ 1 σk = ejφk

N

2
+ 2 < k ≤ N σk = σ∗N−k+2

for even N

(4)

Those real circulant matrices can be viewed as a specific
case of the random convolution introduced by [13] where
phases are supposed to be uniformly distributed.

Based on previous elements, we propose a slightly new, real,
sensing matrix. This real circulant matrix is obtained as the
inverse DFT of a diagonal matrix created by the symmetry on
a Zadoff-Chu sequence (noted “ZC circ real”), as pictured in
(5):

C = F−1


1 0 0 0
0 ZCR[2] 0 0

0
. . . . . . 0

0 0 0 ZC∗R[2]

F (5)

C. Objectives

In this paper we carried out a detailled study on the choice of
optimal codes for the MWC based on multiple criteria, which
permits to justify the use of circulant Zadoff-Chu codes. First,
on the perspective to limit the number of branches and to
simplify the hardware we need to collect as much information
as possible. This is why we will focus on the coherence metric
regarding various codes and selectors in Sect. II-A. Second,
our goal is to guarantee a solution resilient to noise. To this end
we will yield in Sect. III an estimation of isometric properties,
with both a benchmark for Expected RIP (ExRIP) and an
empirical estimation. Last we will validate our insights in
simulation in Sect. IV.

II. COHERENCE ANALYSIS ON CODES AND SELECTORS

A. Definition

The coherence µ [1] is the largest absolute Hermitian inner
product between any two different normalized columns of a
matrix A = RT.Θ = RT.Φ.Ψ of size M × N where RT

is an operator selecting M rows within N , Φ is the matrix
describing the measurement process and Ψ is the N × N
matrix describing the basis in which the signal is sparse:
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µ(A) = max
i6=j

(
| < A.,i,A.,j > |
‖A.,i‖ ‖A.,j‖

)
, (6)

where A.,i is the ith column of A. Θ is then the initial full
square sensing matrix whereas A is the dimension reduced
sensing matrix after row selection. The coherence captures
the fact that each projection should be orthogonal or nearly
orthogonal, such that each component of the measurements
captures a unique set of information about the input, and the
information gathered globally is maximised. The coherence
should be as small as possible, with a lower bound given by
the Welch bound [14].

B. Coherence of typical matrices

We aim at comparing the coherence of the matrices typically
benchmarked in Compressive Sensing and more advanced
techniques recently investigated in the literature (Zadoff-Chu
circulant [11], Gold circulant [2]). It is shown in [2] that the
MWC sensing matrix can be expressed as Θ = C.F̃.D where
F̃ is a reordered subset of F and D is a diagonal matrix
accounting for the decay of the code’s Fourier transform
at high frequencies that can be ignored in the coherence
computation, due to normalization. We would like to know
how much performances are influenced by the row selection
within the square sensing matrix. In [11] a random selector
is important to prove geometric properties, whereas in [4] the
selector choice does not globally influence the practical results.
We therefore computed the coherence for various selection
schemes and growing M on Fig. 2. Selecting the pattern
with best coherence among 1000 patterns chosen uniformly at
random is noted “stat”, naively taking the first lines is noted
“fl”, taking regularly spaced lines is noted “sub”.
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Fig. 2: Coherence comparison (N=255, R=1).

Random and Gold codes are outperformed by Zadoff-Chu
circulant codes with “stat” selector. Fig. 2 also highlights that
for Zadoff-Chu, the coherence depends highly on the selection
of the codes. Naively taking the first lines for Zadoff-Chu
would lead to a bad choice with poor coherence performances.
For the sake of clarity not all curves are represented, but

note that the coherence of Gold codes was similar with other
selectors and complex circulant Zadoff-Chu codes coherence
was the same as for real ones. Codes that have sufficiently low
coherence must now prove their isometric properties.

III. ISOMETRIC PROPERTIES

Isometric properties are a major pillar in the compressive
sensing framework, but they are uncomputable. To get an
intuition about the size and the behavior of the constants δ
at stake in the preservation of norm and distance, a practical
approach is chosen to achieve a reasonable estimation.

A. Definition

The Restricted Isometry Property (RIP) [1] highlights
how much a vector can be deformed by the embedding in a
smaller dimension: a matrix Φ satisfies RIP with parameters
(K, δK) if there exists a δK ∈ [0, 1] such that:

(1− δk) ‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δk) ‖x‖22 (7)

for all K-sparse vectors x ∈ RN .
The Johnson-Lindenstrauss Lemma (JLL) [15] on the other
hand guarantees the conservation of the pairwise distance
during a dimensionality reduction and thus it is perhaps more
adapted to partial restitution methods. Based on it, we can
say that a matrix Φ satisfies the JLL property with parameters
(Q,K, δK) if there exists a δK ∈ [0, 1] such that:

(1− δk) ‖u− v‖22 ≤ ‖Φu−Φv‖22 ≤ (1+ δk) ‖u− v‖22 (8)

for all u,v elements of a set of Q K-sparse vectors ∈ RN .

B. Empirical RIP and JLL

Empirical RIP and JLL constants are computed through
statistical estimation. Such simulations are known to miss spe-
cific pathological cases [16] and be overoptimistic however we
could expect that the maximum δ encountered in practice will
almost always be close to the maximum δNv

estimated. For
RIP we generated 108 test vectors, subdivided in Ns = 1000
subsets of Nv = 10000 vectors. Each vector of length 127 has
K = 6 non-zero values, uniformly distributed on the support
and with values uniformly distributed on [−0, 5; 0, 5]. We then
projected them with a sensing matrix of dimension 50× 127
to study the variations of the norm of vectors x through
projection. For JLL, we similarly generated Ns = 1000
subsets of Nv = 200 vectors (19900 distances) to study the
variations of the norm of distances between u and v through
projection. To get an estimation of the isometry deviation
likely encountered in practice, we established histograms of
deltas for the subsets Ns, in Fig. 3 for RIP and Fig. 4 for
JLL. We also reported the average ENs(δNv ) and standard
deviation σNs(δNv ) of δ between the different subsets.

The standard deviation being very small, the methodology is
validated. Fig. 3 shows that RIP-δ is nearly 1.5 times smaller
for sensing matrices based on real circulant Zadoff-Chu codes
than Gold and Random codes (0.27 instead of 0.36 and 0.39).
Fig. 4 shows that JLL-δ is more than 1.5 smaller for sensing
matrices based on Zadoff-Chu circulant codes than Random
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Fig. 3: Histogram of RIP-delta estimation (1000.10000,
K=10).
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Fig. 4: Histogram of JLL-delta estimation (1000.200, K=10).

codes and more than 12 times smaller than Gold codes (0.28
instead of 0.44 and 3.4). This means we can reasonably rely
on a small RIP and JLL constant for circulant Zadoff-Chu
matrices.

C. Expected RIP (ExRIP)

The Expected RIP (ExRIP) criterion introduced by [17]
gives the probability P that a matrix satisfies the RIP assuming
a uniform distribution of the support and random distribution
of non-zero values. It is easily computable based on three cor-
relation criteria α, β and γ defined in [17]. To the best of the
author’s knowledge ExRIP guarantees are only established for
real codes. Table I shows a comparison of ExRIP probability P
that we have performed for various codes (“Ours”, our results),
benchmarked with results of [17]. Parameters of [17] are more
detailled in the corresponding technical report [18].

It appears that circulant codes based on Zadoff-Chu se-
quences perform better than the other analyzed codes and that
the statistical selector is slightly more effective. This can be
related to their known good correlation properties.

TABLE I: ExRIP (M = 511, K = 24, δ2K =
√
2− 1)

Code ZC(fl) ZC(stat) Random Gold(fl) Hadamard

P Ours 0.9498 0.9511 0.927 0.9405 0
[17] − − 0.927 0.939 0

IV. PLATFORM VALIDATION

Isometric properties are linked to measurement noise re-
silience [19]. We want to confirm our previous results in
numerical simulation and infer that codes with good isometric
properties are indeed robust to noise. All simulations are
based on a MATLAB platform inspired by [2] and available
upon request. Parameters choices are N = 127, fs = fp
and Orthogonal Matching Pursuit (OMP) [20] as recovery
algorithm. The input multiband signal is given by:

x(t) =

K/2∑
i=1

√
B sinc(B(t− τi)) cos(2πfi(t− τi)), (9)

where K = 6, B = 78MHz, fmax = 5GHz, τi =
{0.4, 0.6, 0.8}Tacq , Tacq = N/fs and fi are chosen uniformly
at random.

An accurracy graph showing the percentage of support
fully recovered with respect to the compression rate M/N
is represented on Fig. 5 for both a noisy (10 dB Input Signal
to Noise Ratio (ISNR)[21]) and a noiseless environment.
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Fig. 5: Accuracy of the MWC with growing compression
rate (K=6, 200 trials, OMP reconstruction algorithm),
solid:10 dB ISNR, dashed: noiseless.

In the noiseless setting (dashed), Gold, circulant Zadoff-Chu
with statistical selection and Random Bernoulli codes show
similar good performances. It is striking that for Zadoff-Chu
circulant codes, the success rate increases at small compression
rate (M/N > 0.05) for statistical selection and at high
compression ratio (M/N > 0.5) for first lines selection but
that it reaches the same final performance. In fact this confirms
that the required number of measurements is affected by
coherence properties, which for Zadoff-Chu are dependent
on the selector (and a naive selector is a bad choice as
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seen in Sect. IV). In the noisy context however, Gold codes
performances collapse (at M/N = 0.5, 70% loss) whereas
Zadoff-Chu codes degrade less (10% loss) than random codes
(20% loss). Performances in a noisy context fit therefore our
analysis of isometric properties: Zadoff-Chu circulant codes
are indeed more resilient to noise than other analyzed codes.
Note that complex Zadoff-Chu circulant codes, which are
not shown for sake of curve’s readibility, performed almost
identically to the real version.

V. CONCLUSION

In conclusion this paper proposed a methodology for the
evaluation of codes used in the MWC sensing matrix. Usual
binary codes (Gold and Bernoulli) and more recent proposals
have been benchmarked. We showed that real circulant codes
based on Zadoff-Chu sequences are promising due to several
reasons: first, they may be implemented with the storage of
a N -length real code based on Zadoff-Chu sequences and
of an arbitrary fixed M -length pattern selected randomly out
of N time shifts. Second, they have good coherence, thus
requiring an almost minimal number of branches and handling
bad sparsity. More importantly they have excellent isometric
properties, especially JLL which implies robustness against
noise, in contrast to Gold codes. In addition, noise resilience
of circulant codes based on Zadoff-Chu sequences has been
verified by simulation means. Conceptually this solution can
be seen as an implementation-friendly variation of the random
convolution. Since isometric properties are also useful for
classification purposes, perspectives would be to extend the
analysis to signal classification.
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