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Abstract—This paper addresses the problem of sequential
binary hypothesis testing in a multi-agent network to detect
a random signal in non-Gaussian noise. To this end, the con-
sensus+innovations sequential probability ratio test (CISPRT) is
generalized for arbitrary binary hypothesis tests and a robust
version is developed. Simulations are performed to validate the
performance of the proposed algorithms in terms of the average
run length (ARL) and the error probabilities.

I. INTRODUCTION

We study the problem of detecting a signal in non-Gaussian

noise using a network of agents, each of which performs a

sequential hypothesis test based on its own measurements

and neighbor information. The test is sequential to make

a decision as soon as enough data has been collected to

guarantee a certain level of confidence [1]. It is distributed

to avoid having a single point of failure and exploit the

inherent scalability and fault-tolerance of a sensor network [2].

We resort to the consensus+innovations sequential probability

ratio test (CISPRT) introduced in [3], [4] for Gaussian shift-

in-mean problems and extend its concept for use in binary

hypothesis tests with arbitrary noise distribution.

The contribution of this paper is threefold. First, we gener-

alize the formulation of the CISPRT from [4] to be applicable

to arbitrary binary hypothesis tests. Second, we derive a robust

version dubbed R-CISPRT based on least-favorable densities

(LFDs). To this end, we, third, give an approximation of the

probability distribution of the log-likelihood ratio of the LFDs

under the null hypothesis and the alternative and calculate its

mean and variance.

The paper is structured as follows: In Section II we formu-

late the problem of detecting a signal with known variance

in noise with a distributed sequential hypothesis test. Subse-

quently, we provide a generalized formulation of the CISPRT

in Section III before deriving a robust extension in Section IV.

Section V is dedicated to simulations and conclusions are

drawn in Section VI.

II. PROBLEM FORMULATION

Let (X1, . . . , Xn) be a sequence of independent and iden-

tically distributed random variables defined on a probability

space (Ω,F , P ). Their common distribution P is assumed to

admit a density p. Consider a network of N agents, which can

be modeled as an undirected graph G = (V , E) with the sets

of agents V and edges E . The open neighborhood of agent k

is given by Nk = {l ∈ V | (k, l) ∈ E}.

Each agent k sequentially performs a binary hypothesis test

to decide between the null hypothesis H0 and the alternative

H1, where

H0 : P = P0,

H1 : P = P1.

We consider the case where each agent k should decide on

the presence or absence of a signal x(t) ∼ N (0, σ2
x) using

its measurement yk(t) at time instant t as well as information

from its neighbors. The hypotheses become

H0 : yk(t) ∼ N (0, σ2
n),

H1 : yk(t) ∼ N (0, σ2
x + σ2

n),

where σ2
n is the variance of a zero-mean white Gaussian noise

process, which is independent of x(t). Hence, the problem of

detecting x(t) boils down to a variance test.

In many practical applications there is an uncertainty about

the distribution of the data, i.e., the assumption of Gaussianity

in the measurement noise might be violated. By taking this

uncertainty into account the test is transformed into a com-

posite one between two disjoint probability sets P0 and P1

with

H0 : P ∈ P0,

H1 : P ∈ P1.

Using the concept of robustness the test can be designed

a priori to guarantee a certain reliability in terms of the

probabilities of false alarm PFA and misdetection PMD for all

possible probability pairs (P0, P1) ∈ P0 × P1 [5], [6]. The

resulting test is again a likelihood ratio test but of the LFDs

instead of the nominals. We will go into detail on this issue

in Section IV.

III. A GENERAL FORMULATION OF THE CISPRT

In [3], [4] the authors propose a distributed sequential

detector called CISPRT based on the consensus+innovations

approach [7]. Analogous to Wald’s centralized SPRT [1], each

agent k in the CISPRT compares its test statistic Sk(t) at time
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instant t with an upper and a lower threshold to either decide

for one of the two hypotheses if the respective threshold is

crossed, or continue the test. Sk(t) is recursively calculated as

[3], [4]

Sk(t) =
∑

l∈Nk∪{k}

wkl (Sl(t− 1) + ηl(t)) , (1)

with wkl denoting appropriate combination weights that sum

up to one and

ηk(t) = log

(

p1(yk(t))

p0(yk(t))

)

(2)

being the log-likelihood ratio of agent k at time instant t.

Since the decision thresholds in [4] only hold for symmetric

Gaussian shift-in-mean hypothesis tests, we generalize them

for use in arbitrary binary hypothesis tests. In the following,

we, first, give expressions for the mean and the variance of

the test statistic under both hypotheses. Subsequently, we for-

mulate expressions for the two decision thresholds depending

on the mean and the variance of the log-likelihood ratio.

A. Mean and Variance of the Test Statistic

In CISPRT, the distributed test statistic Sk(t) at agent k

and time instant t is given by [3], [4]

Sk(t) =

t
∑

j=1

e⊤k W
t+1−jη(j), (3)

with ek denoting the kth column of the identity matrix of

size N . Furthermore, W is the N ×N matrix of combination

weights and η(j) = [η1(j), . . . , ηN (j)]
⊤

denotes the vector

of the log-likelihood ratios of all agents at time instant j.

Assuming that ηk(t) is Gaussian distributed under Hi ∈ {0, 1}
with mean µη,i and variance σ2

η,i, i.e., ηk(t) ∼ N (µη,i, σ
2
η,i),

the expected value of the test statistic under Hi is given by

Ei{Sk(t)} =

t
∑

j=1

e⊤k W
t+1−jEi{η(j)} = µη,it. (4)

With Cη = σ2
η,iI , I being the identity matrix of size N ,

and following the derivation in [4], the variance of the test

statistic under hypothesis Hi is upper bounded by

Vari{Sk(t)} = Ei{(Sk(t)− µηt)
2}

=

t
∑

j=1

e⊤k W
t+1−jCηW

t+1−jek

≤ σ2
η,i

(

t

N
+

1− r2t

1− r2

)

≤
σ2
η,it

N
(m+ 1) ,

(5)

with m = Nr2 and r = ‖W − 1
N
11

⊤‖ being the rate of

information flow in the network, ‖ · ‖ denoting the Euclidean

norm and 1 the one-vector of length N .

B. Decision Thresholds

The test can easily be shown to terminate almost surely at

finite stopping time T . Hence, Sk(T ) is well-defined and the

probability of false alarm can be written as [4]

PFA = P0(Sk(T ) ≥ γu)

≤
∞
∑

t=1

P0(Sk(t) ≥ γu)

≤
∞
∑

t=1

Q





γu − µη,0t

ση,0

√

t
N
(m+ 1)



 .

(6)

Using the property Q(x) ≤ 1
2e

−x2

2 and following the deriva-

tion in [4], we obtain

PFA ≤
1

2

∞
∑

t=1

e

−Nγ2
u−Nµ2

η,0t2+2Nγuµη,0t

σ2
η,0t(m+1)

≤
2e

7Nγu
4(m+1)

µη,0

σ2
η,0

1− e
− N

2(m+1)

µ2
η,0

σ2
η,0

.

(7)

Requiring PFA ≤ α and solving for γu yields the upper

threshold

γu ≥
4(m+ 1)

7N

σ2
η,0

µη,0

[

log
(α

2

)

+ log

(

1− e
− N

2(m+1)

µ2
η,0

σ2
η,0

)]

.

(8)

The lower threshold can be found similarly in terms of the

maximally allowed probability of misdetection PMD ≤ β as

γl ≤
4(m+ 1)

7N

σ2
η,1

µη,1

[

log

(

β

2

)

+ log

(

1− e
− N

2(m+1)

µ2
η,1

σ2
η,1

)]

.

(9)

As mentioned in [4], tighter thresholds can be obtained by

numerically solving

1

2

∞
∑

t=1

e

−Nγ2
l
−Nµ2

η,1t2+2Nγlµη,1t

2σ2
η,1t(m+1) = β

1

2

∞
∑

t=1

e

−Nγ2
u−Nµ2

η,0t2+2Nγuµη,0t

2σ2
η,0t(m+1) = α.

(10)

IV. ROBUST DISTRIBUTED SEQUENTIAL DETECTION

USING THE R-CISPRT

Having found a general formulation of the CISPRT for ar-

bitrary binary hypothesis tests, we will now extend the concept

to deal with composite hypotheses arising from distributional

uncertainties.
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Fig. 1: (a) Exemplary histogram of the clipped log-likelihood ratio ηc
k(t) and (b) probability density of the robust test statistic

Srobust
k (t) of an agent with 3 neighbors at different time instances

A. Least-favorable Densities

We characterize the set of possible probabilities Pi under

hypothesis Hi using Kassam’s band model [8], [9] as

Pi =
{

Pi

∣

∣

∣ p
′
i ≤ pi ≤ p′′i

}

, (11)

such that the true density pi is assumed to lie within a band

specified by the bounds p′i and p′′i . Using the construction

algorithm stated in [9, Table 1], we can iteratively calculate

the corresponding LFDs as

q0 = min {p′′0 ,max {c0(νq0 + q1), p
′
0}}

q1 = min {p′′1 ,max {c1(q0 + νq1), p
′
1}}

(12)

for some ν ≥ 0 and some c0, c1 ∈ (0, 1
ν
]. In this paper, we

assume uncertainties of the ε-contamination type [10], i.e.,

pi = (1− ε)p0i + εhi

= p′i + εhi,
(13)

where ε is the contamination factor, and p0i and hi denote

the density of the nominal and the contaminating distribution

under Hi, respectively. Furthermore, hi is assumed to have a

κ-times higher variance than p0i . ε-contamination is captured

by the band model by setting p′′0 = p′′1 = ∞ and ν = 0 [9].

Thus, (12) reduces to

q0 = max {c0q1, p
′
0}

q1 = max {c1q0, p
′
1} ,

(14)

which corresponds to the LFDs of Huber’s famous clipped

likelihood ratio test [5], [6].

B. The Robust Test Static and its Density

To design a robust version of the CISPRT, we replace ηk(t)
in (1) by the corresponding clipped log-likelihood ratio

ηc
k(t) = log

(

q1(yk(t))

q0(yk(t))

)

(15)

to obtain a robust test statistic Srobust
k (t). A histogram of the

probability density of ηc
k(t) under the LFD Q0 is shown in

Fig. 1(a). It corresponds to the scaled nominal density clipped

at C0 = − log (c0) and C1 = log (c1) with the excess

probability being accumulated at the clipping points as

A0,i = Qi(η
c
k(t) ≤ C0)

= (1− ε)P 0
i (η

c
k(t) ≤ C0) + iε

= (1− ε)Q

(

−
C0 − µp0

i

σ2
p0
i

)

+ iε

(16)

A1,i = Qi(η
c
k(t) ≥ C1)

= (1− ε)P 0
i (η

c
k(t) ≥ C1) + (1− i)ε

= (1− ε)Q

(

C1 − µp0
i

σ2
p0
i

)

+ (1 − i)ε,

(17)

with µp0
i

and σ2
p0
i

denoting the mean and the variance of the

nominal distribution under hypothesis Hi. The probability of

drawing an outlier is also placed at C1−i since an outlier under

H0 (H1) causes a large (small) value of ηc
k(t).

C. Mean and Expected Value of the Robust Test Statistic

In order to calculate the mean and the variance of the

robust test statistic, we have to find expressions for the mean

µηc,i and the variance σ2
ηc,i of the clipped log-likelihood

ratio under Hi. Note that the superscript k has been dropped

since the distribution is equal for all agents. We approximate

the probability density shown in Fig. 1(a) by two weighted

Kronecker deltas at C0 and C1 and a weighted uniform

distribution in between. With A2,i =
(1−A0,i−A1,i)

C1−C0
, µηc,i and

σ2
ηc,i can be calculated as

µηc,i = Ei{η
c} =

∫

Ω

pηc,i(x)x dx

=

∫ C1

C0

(A0,iδ(x − C0) +A1,iδ(x− C1) +A2,i)x dx

= A0,iC0 +A1,iC1 +A2,i
C2

1 − C2
0

2
(18)
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Fig. 2: Results for detecting a signal in noise using CISPRT and R-CISPRT under H0 and H1 with different thresholds

σ2
ηc,i = Ei{(η

c)2} − µ2
ηc,i =

∫

Ω

pηc,i(x)x
2 dx− µ2

ηc,i

= A0,iC
2
0 +A1,iC

2
1 +A2,i

C3
1 − C3

0

3
− µ2

ηc,i.

(19)

D. Robust Decision Thresholds

Contrary to the assumption in Section III-A, the clipped

log-likelihood ratio is not normally distributed. However, due

to the central limit theorem we can assume the distribution of

the robust test statistic Srobust
k (t) to be approximately normal

[11], [12]. Figure 1(b) shows the density of Srobust
k (t) for an

agent with three neighbors at different time instances. Due to

the data exchange over the neighborhood the density becomes

approximately normal already after the first few time instants.

In a denser network convergence is even faster. Hence, we

calculate the mean and variance of Srobust
k (t) by replacing µη,i

and σ2
η,i in (4) and (5) with their robust counterparts. Plugging

the results into (8) and (9) yields the robust decision thresholds

γrobust
l and γrobust

u .

V. SIMULATIONS

A. Simulation Setup

We consider a network of N = 20 agents with uniformly

distributed x- and y-coordinates on the interval [0, 1]. Agents

within a radius of g = 0.6 are neighbors. The required false

alarm and misdetection probabilities are assumed to be equal,

ranging from 10−3 to 10−1. The maximum run length is

Nmax = 50. We test for a known speech signal sampled at

frequency fs = 16 kHz with a variance of σ2
x = 4.5 in the

considered interval. The measurement noise is ε-contaminated

with σ2
n = 1.5, ε = 0.1 and κ = 10.

To assess the performance of the R-CISPRT vs. the regular

CISPRT, we evaluate the average run length (ARL), as well
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as the probabilities of false alarm and misdetection, PFA and

PMD, respectively. The results are averaged over NMC = 1000
Monte Carlo runs.

B. Simulation Results

Figures 2(a) and (b) show the ARL of the CISPRT and the

R-CISPRT when H0 or H1 is true, Figures 2(c) and (d) depict

the corresponding false alarm and misdetection probabilities.

We use the decision thresholds calculated according to (8) and

(9) as well as thresholds obtained by numerical evaluation of

(10). We observe that the robust algorithm always achieves

PFA = PMD = 0 while the non-robust algorithm has a false

alarm probability of 1, i.e., it always assumes the signal to

be present and thus fails under H0. The trade-off of having

a robust detector is a higher ARL as can be seen in Figures

2(a) and (b). However, the ARL can be reduced by using the

tighter decision thresholds.

VI. CONCLUSION

In this paper we generalized the CISPRT to be applicable

to arbitrary binary hypothesis tests and developed the robust

R-CISPRT. Our simulations showed that the robust algorithm

can deal with non-Gaussian noise at the cost of a longer testing

time while the non-robust algorithm breaks down.
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