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ABSTRACT
This paper introduces a methodology for numerical compu-
tation of the Posterior Cramér-Rao Lower Bound (PCRLB)
for the position estimate mean-square error when a moving
emitter is tracked by a network of received-signal-strength
(RSS) sensors using a distributed, random exchange diffusion
filter. The square root of the PCRLB is compared to the
empirical root-mean-square error curve for a particle filter
implementation of the diffusion filter, referred to as RndEx-
PF, and to the square root of the PCRLB for the optimal
centralized filter that assimilates all network measurements
at each time instant. In addition, we also compare the
proposed RndEx-PF algorithm to three alternative distributed
trackers based on Kullback-Leibler fusion using both iterative
consensus and non-iterative diffusion strategies.

Index Terms— Posterior Cramér-Rao Lower Bound,
Particle Filters, Diffusion, RSS Sensors, Emitter Tracking.

I. INTRODUCTION

Distributed particle filtering (PF) [1] has become a stan-
dard technique for cooperative target tracking in sensor
networks where each network node has computational and
communication capabilities of its own. A common network
cooperation strategy found in other contexts in the literature
is the Kullback-Leibler (KL) fusion methodology, see e.g.
[2], [3], where, at any given instant n, each node first runs
a local particle filter that assimilates only the node’s own
current measurements. Subsequently, the network nodes run
an iterative average consensus protocol [4] which, after
multiple iterations, seeks to replace the local state posterior
probability density functions (p.d.f’s) at each node with
a normalized version of the geometric mean of all node
posteriors. A non-iterative, online version of the KL fusion
approach was also independently introduced by Dedecius et
al. in [5].

Alternatively, we introduced in [6] and [7] the non-iterative
Random Exchange Diffusion Particle Filter (RndEx-PF),
which, building on previous work on distributed Kalman
filtering by Kar et al. [8], uses a methodology where
network nodes first exchange their local posterior p.d.f’s

with randomly selected neighbors and then use a particle
filter to assimilate all available measurements in their closed
neighborhood. As shown in [7], the aforementioned algorithm
builds over time, at each node, different state posterior
p.d.f’s conditioned on different random subsets of all network
measurements, with the measurements in each of those
random subsets coming from the entire network and not only
from the node’s immediate vicinity, thus enabling information
diffusion.

In this paper, building on previous results in [9], we
introduce a methodology for numerical computation of
the posterior Cramér-Rao lower bound (PCRLB) for the
average network mean-square state estimation error when the
proposed random exchange diffusion protocol is used. The
computed bound is compared, in a specific application of
emitter tracking with received-signal-strength (RSS) sensors,
to the empirical performance, assessed via simulations, of
the RndEx-PF tracker, and is also compared to the PCRLB
for the mean-square state estimation error associated with
the optimal centralized filter that assimilates all network
measurements at each instant. Finally, we also compare the
RndEx diffusion bound to the simulation performance of a
standard iterative consensus KL fusion tracker which follows
the approach in [2] and of a modified diffusion KL fusion
tracker running respectively in non-iterative mode as in [5]
and in consensus mode as in [2].

The paper is divided into 7 sections. Section I is this
Introduction. In Sec. II, we review briefly the RndEx-PF
algorithm and the underlying state and sensor models assumed
in the paper. In Sec. III, we introduce the methodology for
computation of the PCRLB assuming that the network nodes
cooperate using the proposed random exchange protocol.
Sec. IV then briefly describes the alternative consensus KL
tracker based on [2] and the proposed variation inspired by
[5]. Simulation results, are presented in Sec. V. Finally, we
offer some conclusions in Sec. VI.

II. RANDOM EXCHANGE DIFFUSION FILTER
In this Section, we review the state and sensor models

and the RndEx-PF tracking algorithm from references [6]
and [7]. We use lowercase letters to denote both random
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variables/vectors and realizations of random variables/vectors
with the proper interpretation implied in context.

II-A. State and Sensor Model
We track the sequence of hidden state vectors {xn ,[
xn ẋn yn ẏn

]T } that collect the positions and veloci-
ties of a moving emitter’s centroid respectively in dimensions
x and y at each time instant n ≥ 0. The sequence
{xn} evolves in time according to the linear, white-noise
acceleration model xn+1 = Fxn+un, described in [10], with
{un} a sequence of independent, identically distributed (i.i.d)
Gaussian vectors with zero mean and covariance matrix Q.
Moreover, let T and σaccel denote respectivelly the sampling
period and the acceleration standard deviation, matrices F
and Q are given by F = diag(F̃, F̃) and Q = diag(Q̃, Q̃)

with F̃ =

[
1 T
0 1

]
and Q̃ = σ2

accel

[
T 3/3 T 2/2
T 2/2 T

]
.

A network of R RSS sensors records at each instant n
the measurements zn,r in dBm at each network location
r ∈ V , {1, 2, . . . , R} such that [11]

zn,r = P0 − 10ζr log

(
||Hxn − xr||

d0

)
︸ ︷︷ ︸

gr(xn)

+νn,r (1)

where νn,r is a zero-mean i.i.d. Gaussian noise process with
known variance σ2

r , xr is the r-th sensor position, ||.|| is the
Euclidean norm, and the parameters (P0, d0, ζr) are known
model parameters (see [11] for details) and H is a 2 × 4
projection matrix such that H(1, 1) = H(2, 3) = 1 and
H(i, j) = 0 otherwise. In the remainder of the paper, the
closed neighborhood of node r, denoted N(r), is defined as
the union of {r} and the set of all indices {`} such that node
` is a neighbor of node r according to the topology of the
network graph. The measurement noise νn,r is also assumed
independent from node to node.

II-B. Random Exchange Diffusion Particle Filter
Assume first that a given node s ∈ V has at instant

n − 1 a parametric approximation p̃s(xn−1) of its local
posterior state p.d.f. built from a weighted set of samples
{w(j)

n−1,s,x
(j)
n−1,s}, j = 1, . . . , Np, that represents the true

posterior p.d.f. p(xn−1|Z0:n−1,s) where Z0:n−1,s is the set
of network measurements assimilated by s up to instant
n−1. At instant n, after all network nodes have executed the
random exchange protocol originally introduced in [6] and [7]
and summarized in Sec. III-A, node s and another random
network node r exchange their parametric representations of
the state posterior such that p̃s(.) is now available at node r.
Upon receiving p̃s(.), node r at instant n, for j = 1, . . . , Np,

1) Draws new particles x̃
(j)
n−1,s ∼ p̃s(xn−1),

2) Samples x
(j)
n,r ∼ p(xn|x̃(j)

n−1,s),
3) Computes the updated importance weights w

(j)
n,r ∝∏

`∈N(r) p(zn,`|x
(j)
n,r),

where, in Line 3, the proportionality constant is such that∑
j w

(j)
n,r = 1. Barring the parametric approximation step

prior to the random exchange protocol, it can be shown,
see [7], that {w(j)

n,r,x
(j)
n,r} is now a properly weighted set to

represent the posterior p(xn|Z0:n,r) at node r at instant n,
where Z0:n,r , Z0:n−1,s∪Zn,r and Zn,r , {zn,`, ` ∈ N(r)}.
Finally, we approximate the integral in E{xn|Z0:n,r} by the
Monte Carlo approximation

x̂n,r ,
∑
j

w(j)
n,r x(j)

n,r.

III. PCRLB FOR THE RNDEX DIFFUSION FILTER
We introduce in this section a methodology to compute

the posterior Cramér-Rao lower bound (PCRLB) for the
distributed emitter tracking error considering that network
nodes diffuse information using the random exchange proto-
col described in the sequel.

III-A. Random Exchange Protocol
More specifically, at instant n − 1, each network node

s randomly chooses an available neighboring node ` and
sends then a single request to exchange the parametric
representation of its local posterior with node `. Upon
receiving an acknowledgement from node `, node s thus
sends the set of parameters that represent p̃s(.) to node `
and, likewise, receives from node ` the corresponding set
of parameters that represent p̃`(.). The random exchange
procedure terminates when all network nodes have their
requests processed by an available node in their vicinity.
Finally, after performing the random exchange step, each
node r broadcasts its own measurement at instant n to its
neighbors and then assimilates the set of measurements Zn,r

using the procedure in Line 3 of Section II-B.
As the initial posterior p.d.f. p(x0|Z0,r0) on a node r0 ∈ V

at time 0 follows a path Pn,rn , {r0, . . . , rk, . . . , rn} along
the network according to the random exchange protocol,
it assimilates, at each time instant k ∈ {0, . . . , n}, the
available measurements Zk,rk at each visited node rk ∈
Pn,rn . Mathematically, at a given time n, the posterior
p(xn|Zn,rn ,Z0:n−1,rn−1

) at a node rn is equivalent then
(again barring parametric approximations) to the posterior
provided by a fusion center that, at each instant k ∈
{0, . . . , n}, randomly chooses a closed neighborhood N(rk)
and assimilates all observations contained in Zk,rk . That
interpretation plays a crucial role in the derivation of the
PCRLB for the state estimation error as discussed in the
sequel.

III-B. Computation of the PCRLB
Let Jn,rn denote the Fisher information matrix at instant

n for node rn conditioned on a particular path realization
Pn,rn along the network. In precise mathematical terms, we
write

Jn,rn , E
{
−∆xn

xn
log p(x0:n,Z0:n,rn)|Pn,rn

}
, (2)
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where ∆x′

x , ∇x∇T
x′ and ∇x ,

[
∂
∂x

∂
∂ẋ

∂
∂y

∂
∂ẏ

]T
denote respectively the Laplacian and the Jacobian operators.
Thus, conditioned on Pn,rn , the posterior Cramér-Rao lower
bounds (PCRLB) Pn,rn , (Jn,rn)−1 for the estimate x̂n,rn

computed by node rn satisfies the inequality

E
{
||x̂n,rn − xn||2 | Pn,rn

}
≥ tr[Pn,rn ], (3)

where tr[.] denotes the trace of a matrix. Additionally,
provided the usual independence assumptions

p(Zk,rk |x0:k,Z0:k−1,rk−1
) = p(Zk,rk |xk)

p(xk|x0:k−1,Z0:k−1,rk−1
) = p(xk|xk−1)

for 0 ≤ k ≤ n, the joint probability of x0:n , (x0, . . . ,xn)
and Z0:n,rn , Z0,r0 ∪ . . . ∪ Zn,rn can be factorized as

p(x0:n,Z0:n,rn) = p(x0)
n∏

k=0

p(Zk,rk |xk)
n∏

k=1

p(xk|xk−1).

We can apply therefore the method introduced in [9] to
recursively compute the Fisher matrix Jn+1,rn+1

at instant
n+ 1 given the Fisher matrix Jn,rn originated from a node
rn and the set of measurements Zn+1,rn+1

available at node
rn+1.

We extend first the recursive equations derived in [9] to
consider multiple observers as in (1) and write

Jn+1,rn+1
= D22

n −D21
n (Jn,rn + D11

n )−1D12
n (4)

where

D11
n = E{−∆xn

xn
log p(xn+1|xn)} (5)

D12
n = E{−∆xn+1

xn
log p(xn+1|xn)} =

[
D21

n

]T
(6)

D22
n = E{−∆xn+1

xn+1
log p(xn+1|xn)}

+ E{−∆xn+1
xn+1

log p(Zn+1,rn+1
|xn+1)}. (7)

Furthermore, since the measurements in Zn+1,rn+1
are

independent, we can further write

log p(Zn+1,rn+1
|xn+1) =

∑
`∈N(rn+1)

log p(zn+1,`|xn+1). (8)

Next, we rewrite (5), (6) and (7) for the particular filtering
problem introduced in Sec. II-A with linear dynamics and
log-normal observation model (1)

D11
n = FTQ−1F (9)

D12
n = −FTQ−1 =

[
D21

n

]T
(10)

D22
n = Q−1 +

∑
`∈N(rn+1)

σ−2` E{
[
∇xn+1g

T
` (xn+1)

]
×

[
∇xn+1

gT` (xn+1)
]T } (11)

where[
∇xg

T
` (x)

] [
∇xg

T
` (x)

]T
=

(
10ζ`
ln 10

)2
Dx,`

‖Hx− x`‖4
(12)

with Dx,`(1, 1) = (x − x`)
2, Dx,`(3, 3) = (y − y`)

2,
Dx,`(1, 3) = Dx,`(3, 1) = (x−x`)(y−y`) and Dx,`(i, j) =
0 otherwise.

Note that, as opposed to (9) and (10), Eq. (11) does not
have an exact closed form solution. Thus, we simulate several
emitter trajectories x(i)

0:n+1, i ∈ {1, . . . , NT }, according to the
emitter dynamic model and use the following Monte Carlo
approximation to compute the expectation in the right-hand
side of (11)

D22
n ≈ Q−1 +

∑
`∈N(rn+1)

(
10ζ`

ln 10σ`

)2
1

NT

NT∑
i=1

D
x
(i)
n+1,`∥∥∥Hx

(i)
n+1 − x`

∥∥∥4 .
(13)

Now, let P?
n,rn denote the unconditioned PCRLB for each

node rn at instant n such that

E
{
||x̂n,rn − xn||2

}
≥ tr[P?

n,rn ] , tr[(J?
n,rn)−1], (14)

where J?
n,rn is the unconditioned Fisher information matrix

at instant n. From the law of total expectation and Eq. (2),
we can write

J?
n,rn , E

{
−∆xn

xn
log p(x0:n,Z0:n,rn)

}
= E

{
E
{
−∆xn

xn
log p(x0:n,Z0:n,rn)|Pn,rn

}}
= E {Jn,rn} (15)

with the expectation in (15) taken over all possible paths
Pn,rn along the network that end at node rn at instant n.

Finally, we compute a Monte Carlo approximation of J?
n,rn

in (15) by averaging out a large number Nf of Fisher matrices
J
(m)
n,rn conditioned on distinct path realizations P(m)

n,rn induced
by the random exchange protocol, i.e.

J?
n,rn ≈

1

Nf

Nf∑
m=1

J(m)
n,rn .

IV. KULLBACK-LEIBLER FUSION
Assume, as before, that a given node r has at instant n−1

a weighted set of particles {w(j)
n−1,r,x

(j)
n−1,r}, j = 1, . . . , Np,

that represents its current posterior belief about the unknown
target state. The application of the consensus KL fusion
procedure detailed in [2] and briefly described in Sec. I
would entail the following steps at instant n at each node
r ∈ V:

1) For j = 1, . . . , Np sample x̃
(j)
n,r ∼ p(xn|x(j)

n−1,r) and
update the weights as w̃(j)

n,r ∝ w(j)
n−1,r p(zn,r|x̃

(j)
n,r) with∑

j w̃
(j)
n,r = 1.

2) Build a parametric approximation p̃r(xn) using the
sample set {w̃(j)

n,r, x̃
(j)
n,r} and make β(0)

r (xn) = p̃r(xn).
3) For k = 1, . . . ,Kmax, make

β(k+1)
r (xn) ∝

∏
`∈N(r)

[β
(k)
` (xn)]ar,` , ar,` ≥ 0

with
∑

`∈N(r) ar,` = 1, ar,` = a`,r, and∫
β
(k+1)
r (x)dx = 1.
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4) For j = 1, . . . , Np, resample x
(j)
n,r ∼ β

(Kmax)
r (xn)

and reset w(j)
n,r = 1/Np.

It is relatively straightforward to show that limk→∞ β
(k)
r (xn)

∝ [
∏

`∈V p̃`(xn)]1/R, ∀r, which, as argued in [2],
is, after normalization, the p.d.f. p∗ that minimizes
(1/R)

∑
`∈V D(p∗||p̃`), where D(.||.) denotes the Kullback-

Leibler divergence.

Modified Version We modify the KL fusion algorithm
replacing the weight update rule in Line 1 with w̃

(j)
n,r ∝

w
(j)
n−1,r

∏
`∈N(r) p(zn,`|x̃

(j)
n,r) to allow network nodes to

assimilate the available measurements in their vicinity before
the Kmax consensus iterations. In addition, following the lead
in [5], we can optionally make the algorithm non-iterative
by setting Kmax = 1 in Line 3. As shown in [5], the choice
of Kmax = 1 leads to β(1)

r (xn) on the left-hand side of the
recursion in Line 3 to be the p.d.f. p that minimizes instead∑

`∈N(r) ar,`D(p||p̃`).

If β(k)
r (.) is represented at the iteration k and at node r by

a Gaussian function with mean vector m(k)
r and covariance

matrix P
(k)
r , the fusion rule in Line 3 reduces [5] to making

[P
(k+1)
r ]−1 =

∑
`∈N(r) ar,`(P

(k)
` )−1 and

(P(k+1)
r )−1m(k+1)

r =
∑

`∈N(r)

ar,` (P
(k)
` )−1m

(k)
` .

V. SIMULATION RESULTS
We assessed the performance of the RndEx-PF tracker

using 100 independent Monte Carlo runs in a simulated
scenario consisting of R = 25 RSS sensors over a
simulation period of 100 s. We used the same simula-
tion parameters described in [6] to simulate the emit-
ter dynamics and generate sensor measurements. We as-
sumed a Gaussian initial state distribution p(x0) with mean
x̄0 =

[
50 m 0 m/s 50 m 0 m/s

]T
and covariance matrix

P0 = diag(
[
(5 m)2 (0.05 m/s)2 (5 m)2 (0.05 m/s)2)

]
. At

any given node r0, we initialized the conditioned Fisher
matrix as J0,r0 = P−10 .

All filters employed Np = 1000 particles. The particles
at each node were initialized at instant 0 according to the
distribution p(x0). At instant n+ 1, we used a distinct set of
NT = 10000 trajectories in (13) to recursively compute the
conditioned Fisher matrix Jn+1,rn+1 at node rn+1 given the
Fisher matrix Jn,rn at node rn. Finally, at any instant n, we
employed Nf = 1000 different Fisher matrices {J(m)

n,rn , 1 ≤
m ≤ Nf} conditioned on distinct network paths P(m)

n,rn to
compute the unconditioned Fisher matrix J?

n,rn = (P?
n,rn)−1

at node rn.
Note that, in the RndEx filter, each node has a different

position estimate and a different associated mean-square
estimation error (MSEE). Fig. 1 shows the RndEx-PF
empirical root-mean-square (RMS) position estimate error
averaged over all network nodes from instant zero up to
instant 100 s and compares it to the average PCRLB for

the square-root of the RndEx filter position MSEE obtained
by averaging

√
P?

n,rn(1, 1) + P?
n,rn(3, 3) over all possible

25 node indices rn at each instant n. For comparison, we
also show in Fig. 1 the PCRLB for the square-root of
the centralized filter position MSEE, and the average RMS
position estimate error curves for the Consensus KL Fusion
filter [2] using Kmax = 10 consensus iterations and for the
modified KL fusion algorithm proposed in Sec. IV using
either Kmax = 1 and Kmax = 10 consensus iterations.
We refer to the modified trackers with Kmax = 1 and
Kmax = 10 as the Non-iterative and the Iterative KL Fusion
filters, respectively. The KL fusion trackers used Metropolis
weights ar,` [12], [13] and the bars shown in Fig. 1 along
the curves represent the standard deviation of the error norm
across all nodes. An alternative algorithm for distributed
computation of the optimal centralized PCRLB is discussed
in [14].

0 20 40 60 80 100
0.5

1

2

4

E
rr
o
r[
m
]

Time[s]

Consensus KL Fusion
RndEx-PF
RndEx-PF PCRLB
Non-Iterative KL Fusion
Iterative KL Fusion
Centralized PCRLB

Fig. 1. Evolution of the estimated position RMS error norm.

As expected, the RndEx-PF RMS error is above its
corresponding PCRLB. The region between the empirical
RndEx-PF RMS error curve and its PCRLB in Fig. 1 is
filled in light red to highlight the gap between the two
curves. Furthermore, despite being non-iterative, the RndEx-
PF tracker actually showed better error performance in our
simulations than the standard Consensus KL Fusion algorithm,
probably because the latter does not include local cooperation
before fusion. However, RndEx-PF had a higher RMS error
than the Non-iterative KL Fusion algorithm with Kmax = 1,
which suggests that local cooperation plus KL fusion allows
nodes to incorporate more information at each time than the
random exchange protocol. The performance of the modified
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KL fusion scheme was further improved by increasing Kmax
from 1 to 10, in which case the corresponding RMS error
curve further approaches the PCRLB for the centralized filter
error. Note also that the performance of the modified KL
fusion tracker is not limited by the theoretical RndEx-PF
PCRLB as KL fusion is a different algorithm.

Table I summarizes the performance metrics for each
evaluated algorithm. They were computed according to the
methodology previously introduced in [6]. The RndEx-PF
tracker has half of the average reception (RX) communication
cost per node of the modified Non-Iterative KL Fusion
algorithm with a similar processing cost and at the expense of
a slight degradation in error performance. In turn, in addition
to having a worse error performance, the Consensus KL
Fusion tracker has an average RX communication cost one
order of magnitude higher than that of RndEx-PF employing
however roughly one-third of the processing cost. Finally, the
Iterative KL Fusion tracker has better error performance than
the Consensus KL Fusion algorithm at the expense of a slight
increase in the average transmission (TX) communication
cost and a huge increase of 170 % in processing cost since
the nodes assimilate all measurements in their vicinity.

Table I. Communication and processing performances.
Evaluated RX TX Duty
Algorithm Rate Rate Cycle
RndEx-PF 148B/s 132B/s 2.9%

Non-Iterative KL Fusion 317B/s 64B/s 2.6%
Iterative KL Fusion 2.9KB/s 604B/s 2.7%

Consensus KL Fusion 2.9KB/s 600B/s 1.0%

VI. CONCLUSIONS
We computed the PCRLB for the MSEE of a distributed,

random exchange (RndEx) diffusion filter. The RndEx
PCRLB was compared to the centralized filter PCRLB and
to the empirical error of a Gaussian PF implementation of
the RndEx filter, denoted RndEx-PF. In addition, we also
compared the RndEx empirical error and the centralized
PCRLB’s to the empirical error of three KL fusion filters.
The error curve of the RndEx-PF tracker, as expected, was
above its corresponding PCRLB. On the other hand, the
Consensus KL Filter without local cooperation before fusion
performed worse than RndEx-PF with a communication cost
one order of magnitude higher than that of RndEx-PF, which
suggests that, in the evaluated scenario, local cooperation is
preferable to standard consensus cooperation. However, the
Non-iterative KL Filter with local cooperation before fusion
was close to the RndEx PCRLB with a communication cost
only twice as high as that of RndEx-PF. Finally, by enabling
local cooperation before consensus KL fusion, the Iterative
KL Filter, although still worse than the centralized PCRLB,
outperformed the RndEx PCRLB.
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