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Abstract—Cognitive Radio (CR) is one of the most promising
techniques for optimizing the spectrum usage. However, the large
amount of data of spectral information that must be processed
to identify and assign spectral resources increases the channel
assignment times, therefore worsening the quality of service for
the devices using the spectrum. Compressive Sensing (CS) is
a digital processing technique that allows the reconstruction
of sparse or compressible signals using fewer samples than
those required traditionally. This paper presents a model that
addresses the Spectral Sensing problem in Cognitive Radio
using Compressive Sensing as an effective way of decreasing the
number of samples required in the sensing process. This model
is based on Compressive Spectral Imaging (CSI) architectures
where a centralized spectrum manager selects what power data
must be delivered by the different wireless devices using binary
patterns, and builds a multispectral data cube image with the
geographical and spectral data power information. The results
show that this multispectral data cube can be built with only
a 50% of the samples generated by the devices and, therefore
reducing the data traffic dramatically.

I. INTRODUCTION

In the next generation of radio systems, the efficient usage
of the spectrum will be essential. Whilst the data traffic in the
wireless networks is so rapidly growing, mainly in the mobile
telephone bands (850MHz, 900MHz, 1900 MHz or 2700MHz
in GSM, UMTS, LTE or ISM), most of the UHF bands are
underused and, therefore, the performance and exploitation of
the electromagnetic spectrum is greatly unbalanced [1].

Cognitive Radio (CR) proposes to reuse the portions of the
spectrum that are not being used over time [2]. CR depends
on the usage of the devices to sense the spectrum in order to
identify the unused portions or spectrum holes. This spectrum
sensing problem, ie., the spectral sensing speed, is one of
the most challenging issues in cognitive radio systems today
and in the near future because of the enormous increase in
the number of devices trying to access the spectrum. As an
example, [3] shows the effect of the increase in the amount
of data processed during the spectral sensing that generates
data package collisions when several cognitive devices send
packages with spectral information to a centralized server
(if a device sends its data packet and the server is busy, a
collision occurs). The larger the packet, more collisions and
worse quality of the service.

Compressive Sensing (CS) is a signal processing technique
that can be used for reducing the number of samples in the
spectral sensing operation. CS allows the reconstruction of a

signal using far less samples than those required by traditional
approaches [4]. CS has already been used in different areas,
such as image processing, medical imaging, seismic data,
biological applications, radars, among others [5]. CS is particu-
larly important in the field of telecommunications [6], in areas
such as channel estimation, MIMO channels, OFDM channels,
UWB systems, sensors networks and antennas [7], [8]. In addi-
tion, Compressive Spectral Imaging (CSI) is an interesting CS
application where the data of a multispectral image involves
a large amount of spatial and spectral information that can be
represented with fewer compressive samples; in some cases,
the amount of data in CSI can be reduced a 90%. In this field,
three of the most remarkable of these CSI architectures are the
spatio-spectral encoded compressive HS imager (SSCSI) [9],
the coded aperture snapshot spectral imagers (CASSI) [10] and
snapshot colored compressive spectral imager (SCCSI) [11].

This work incorporates the advances in CS and CSI to the
spectrum sensing in CR with the proposal of a new multi-
spectral model for CR networks where a spectrum manager
device built a data cube with the geographical and spectral
power information of the wireless devices. This work starts
by introducing the CS and CSI concept and then explains
the multispectral model for CR networks based on the binary
patterns that select the compressive samples that the wireless
devices must take. The quality of the data cube greatly varies
depending on the number of samples selected by the binary
pattern; therefore, the performance of the system is carefully
analyzed in terms of the binary pattern structure. Finally, the
conclusions of this work are presented.

II. COMPRESSIVE SENSING AND COMPRESSIVE SPECTRAL
IMAGING

A signal s ∈ RN is K-sparse if ‖s‖0 = |(s)| = |s(k) 6=
0 : k = 1, ..., N}| ≤ K, where s has at most K non-zeros.
It is possible that the signal has less non-zeros in another
representation basis ΨΨΨ ∈ RN×N where f = ΨΨΨs. CS takes
advantage of the sparsity principle of the signals in order to
apply sensing protocols that capture the essential information
of the signal with a small number of samples. The sensing
process can be represented by

g = ΦΦΦf = ΦΦΦΨΨΨs, (1)
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where ΦΦΦ ∈ RM×N is a sampling matrix. Note that (1) is an
undetermined linear system if M � N , but if f is sparse, it
is possible to find a unique solution solving

f̂`0 = arg min
f
‖f‖0 subject to ΦΦΦf=g. (2)

CS generally involves solving

f̂`1 = arg min
f
‖f‖1 subject to ‖ΦΦΦf-g‖2 ≤ ε. (3)

or the equivalent convex unconstrained optimization problem:

min
f

(
1

2
‖ΦΦΦf-g‖22 + λ‖f‖1

)
. (4)

where ‖ · ‖22 is the Euclidean norm and ‖ · ‖1 is the `1 norm.
In CSI the multispectral image is modeled as a data cube

f ∈ RM×N×L where M ×N are the spatial dimensions and
L is the number of spectral bands. CSI measurements can be
modeled as equation (1) and the signal can be reconstructed by
solving the optimization problem (4). In this case, the sampling
matrix ΦΦΦ corresponds to a optical system. For instance, CASSI
system [10] is an architecture that attains CSI measurements,
in three main steps: first encoding the information with a code
aperture pattern, second using a prism as a dispersive element
that shifts the spectral information and finally impinging in a
focal plane array (FPA) detector.

III. COMPRESSIVE SPECTRUM SENSING MULTISPECTRAL
MODEL

It is possible to model the radio-spectrum data as a M×N×
L data cube where M ×N corresponds to the spatial location
of the power transmitted by wireless devices, and L are the
possible spectrum slot bands, following the same idea as in
the multispectral image with spatial information in different
spectral bands.

Figure 1 shows several Software Defined Radios (SDR)
located in a geographical area, with all the users transmitting
at 20 dbm in their spectral bands. Figure 1 also shows users
transmitting in bands B1, B2, B3 and B4. If we assume that the
wideband wireless network has L consecutive spectrum bands,
we can define an image fk, where 1 ≤ k ≤ L, as the power
handling image in the k frequency. The grayscale pixels of
each image represent power levels, where white is the highest
power level and black the lowest one. Each image on the right
represents one frequency band, therefore L images.

With every SDR sensing the spectrum, it is easy to build
a data cube f(x, y, λ) where (x, y) is one SDR geographical
position and λ a frequency value. Figure 2 shows how the data
cube is built using the samples sent from each SDR.

The data cube construction process is carried out by an
spectral manager, generally called spectrum broker (SB), that
defines the roles of the devices (what and when to sample
and how and when to send the information back to the SB).
Algorithm 1 describes this process in detail.

Fig. 1. Power handling images in 4 frequency bands.

Fig. 2. Data cube construction based on the spectral information of the SDRs.

IV. BINARY PATTERN ARCHITECTURES

A. Binary patterns and transmittance

In a typical CSI architecture the samples are acquired based
on an aperture code T(x,y), where black elements block the
light and white elements let the light to go through [12]. Sim-
ilarly, in this paper we propose a binary pattern architecture
where the SB generates patterns that define which samples to
take in the spatial and frequency domain. In general, binary
patterns are block-unblock masks. Specifically, we have a
matrix D = (di,j) ∈ Cn1×n2 , di,j ∈ {0, 1} where di,j = 1
represents a transmissive element and di,j = 0 represents a
block element. The transmittance values are calculated as

tr =

n1−1∑
i=0

n2−1∑
i=0

di,j
n1n2

, (5)

where n1 are the horizontal pixels and n2 the vertical pixels
of the binary pattern.

For example, tr = 0.2 means that the 20% of the binary
pattern are transmissive and the remaining 80% are blocking.
Figure 3 shows three binary patterns with different transmit-
tance values.

Figure 4 shows an example of a 16 pixels’ binary pattern
that defines the samples to take in the λ spectral band. Note
that the binary pattern discards 9 samples.

B. Compressive multispectral sensing architectures

In this work, we propose three binary pattern-based archi-
tectures in order to perform the compressive multispectral
sensing. The first architecture (Figure 5) applies the same
binary pattern to all the bands of the multispectral data cube.
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Algorithm 1 The general process for building the data cube
Require: There are s SDR’s in the area. There are L spectral

bands. There are M ×N geographic points.
1: A SDRnew requires service.
2: The SDRnew sends a request to SB.
3: The SB defines the samples to request from the SDRnew

using a binary pattern.
4: The SB requests the samples from the SDRnew
5: for k ← 1, s do
6: The SB defines the samples to request from the SDRk

using a binary pattern.
7: The SB request the samples from the SDRk
8: end for
9: The SB builds the model of the equation 1.

10: The SB solves the optimization problem of the equation
4.

11: With the data cube f, the SB assigns spectral resources to
the SDRnew

12: s← s+ 1

Fig. 3. Three binary patterns with different transmittance (a) tr = 0.2 (b)
tr = 0.5 (c) tr = 0.9.

Note in Figure 5 that, exactly like in the CSI architectures,
the 3D data is mapped into a 2D Power Plane Array (PPA) that
corresponds to a P(x,y) matrix, where every pixel is a linear
combination of the data cube pixels and the binary pattern
pixels. This can be expressed by

Pjl =
L−1∑
k=0

FjlkTjl + ωjl, (6)

where Pjl is a measure proportional to the spectral signature
registered by the SDR’s in the geographical position j, l,
mapped in the PPA P ∈ RM×N , L is the number of spectral
bands, Tjl is the binary pattern and ωjl is the noise of the
system.

In Architecture 1, the power level information of several
geographical points in all the bands is discarded, so therefore,
it is possible to have an ill-conditioning problem.

The second proposed architecture, shown in figure 6 has
different binary patterns for each spectral band. This mean that
Architecture 2 selects different samples of different bands and
different geographical points.

In this second architecture, the pixels of the PPA are
calculated by

Fig. 4. Binary pattern in one spectral band.

Fig. 5. Architecture 1 for compressive multispectral sensing.

Pjl =
L−1∑
k=0

FjlkTjlk + ωjl, (7)

where in this case, Tjlk is a data cube with the binary patterns
for 0 < k < L− 1.

Finally, in order to get a closer analogy with the CASSI
system, we propose Architecture 3 (Figure 7), where the
PPA is calculated by the linear combination of displaced data
samples. The model of the P array is

Pjl =
L−1∑
k=0

Fj(l+k)kTj(l+k) + ωjl, (8)

C. The Data Cube Construction

In all the architectures, the PPA is represented by a one-
dimensional vectorized array and P is modeled by

P = ΦΦΦf = ΦΦΦΨΨΨs (9)

that corresponds to the equation 1. In this work ΨΨΨ is the
Kronecker representation basis, and the data cube is built
solving the optimization problem

min
f,w∈RN,v∈RM

‖w‖1 + ιE(ε,I,0)(v)

subject to w=f v=ΦΦΦf-P, (10)
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Fig. 6. Architecture 2 for compressive multispectral sensing.

Fig. 7. Architecture 3 for compressive multispectral sensing.

with the constrained - split augmented Lagrangian shrinkage
algorithm: C-salsa, [13]. E(ε,ΦΦΦ,P) is an ellipsoid that corre-
sponds to the feasible set in problem (3),

E(ε,ΦΦΦ,P) = {f ∈ RN : ‖ΦΦΦf-P‖2 ≤ ε} (11)

In equation 10, E(ε, I, 0) is a closed ε radius Euclidean ball
centered on the origen of RD, and ιS : RD → R denotes the
indicator function of set S ⊂ RD,

ιS(s) =

{
0

+∞
if s ∈ S
if s 6∈ S

(12)

The algorithm presented in [13] was implemented for the
data cube construction.

V. RESULTS

All the proposed architectures were implemented with the
0.5 transmittance binary pattern shown in Figure 8-a. The
simulation runs on a geographical area of 256 × 256 cells
with 30 SDR’s transmitting at 20 dbm distributed in in all
8 possible bands. Figure 8-b shows the PPA calculated with
the linear combination of the compressive samples and binary
pattern pixels.

Figure 9 compares the ideal data cube with the data cube
built for the spectral bands λ1 and λ3 in terms of the Peak
Signal to Noise Ratio (PSNR), that corresponds to the ratio
between the maximum possible power of a original data cube
and the power of corrupting noise that affects the fidelity of
its reconstruction. The data cube was built using the PPA P
matrix and solving the optimization problem of equation (10).

Fig. 8. a) Binary pattern used in the simulations. b) PPA calculated in the
simulation.

Fig. 9. Data Cube Constructed by the SB.

The PSNR value is approximately 39 dB for the images
that represent the real and constructed data cubes in all the
bands; this is a proof of the good quality of our approach.
The data cube construction only needs 50% of the samples of
the real data cube because the binary pattern transmittance is
0.5. This means that each SDR only sends 50% of its spectral
information (data cube spectral axis) and that the SB has
only to calculate 50% of the power levels in the geographical
positions (data cube spatial axis).

To compare the influence of the binary patterns transmit-
tance values in the different architectures, we carried out a
whole set of simulations. Figure 8 shows these results in
terms of the PSNR for the ideal and constructed data cubes.
The results show that there is a value of transmittance that
gets the best data cube construction for each architecture. Not
only that, but also that there is a point where the quality is
no longer improved even with the increment of the transmit-
tance. Therefore, in compressive multispectral architectures
this proves that taking more samples not necessarily means
getting better quality results. Architecture 1 has by far the
worst performance, because all the bands’ samples in specific
geographical points are discarded.
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Fig. 10. Transmittance analysis of the three architectures.

Figure 11 compares the mean square error (MSE) of the
original power spectral signal with the reconstructed, for one
SDR. In this case, the simulation was done with a 150 SDR’s
- 48 bands data cube.

Fig. 11. SDR Spectral Signal Constructed

In order to compare the results with the sampling rate
used in previous works, a decimated rate (DR) is defined as
DR = DN

NS , where DN corresponds to the total number of
original data and NS is the amount of data used before the
data cube construction. We select a model that uses spatial
interpolation [14], and other that uses compressive sensing to
create cartography maps solving the “Orthogonal Matching
Pursuit” (OMP) algorithm [15].

TABLE I
DECIMATED RATE IN THE CONSTRUCTION OF DATA CUBE FOR THREE

MODELS - 8 SPECTRAL BANDS.

DN NS DR

CS Multispectral Model 524.288 32.768 16
CS - OMP model 5.000 400 12.5

Spatial Interpolation Model 80.000 20.000 4

VI. CONCLUSION

This paper presented a new model of compressive mul-
tispectral sensing for cognitive radio based on Compressive
Spectral Imaging Techniques. In this model, a Power Plane
Array (PPA) is built using the compressive samples of the
power information in the different spectral bands of the SDR’s.
The samples were extracted with the help of binary patterns,
in a way that reduced the data sampled by half. Using the
PPA, The Spectrum Broker (SB) constructs the data cube with
the spatial and spectral information of the SDR’s to perform
spectrum sensing and assignment for cognitive radio networks.
This model is our first approximation, and is considering that
the SB is able to know the exact placement of all the users,
and that the users are SDRs to sense the spectrum. This is a
plausible near future scenario, therefore this model will allow
to greatly condense the spectral information of big areas into
small data packages.

REFERENCES

[1] Li-Chun Wang and S. Rangapillai. A survey on green 5g cellular
networks. In Signal Processing and Communications (SPCOM), 2012
International Conference on, pages 1–5, 2012.

[2] I.F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, and S. Mohanty. A
survey on spectrum management in cognitive radio networks. Commu-
nications Magazine, IEEE, 46(4):40–48, 2008.

[3] J. M. Alfonso and L. B. Agudelo. Centralized spectrum broker and
spectrum sensing with compressive sensing techniques for resource
allocation in cognitive radio networks. In 2013 IEEE Latin-America
Conference on Communications, pages 1–6, Nov 2013.

[4] E.J. Candes and M.B. Wakin. An introduction to compressive sampling.
Signal Processing Magazine, IEEE, 25(2):21–30, March 2008.

[5] Henry Arguello and Gonzalo Arce. Spectrally selective compressive
imaging by matrix system analysis. In Imaging and Applied Optics
Technical Papers, page CM4B.5. Optical Society of America, 2012.

[6] Saad Qaisar. Compressive sensing: From theory to applications, a survey.
Journal of Communications and Networks, 15:443 – 455, 2013.

[7] M. B. Hawes y W. Liu. Robust sparse antenna array design via
compressive sensing. Digital Signal Processing (DSP), 2013.

[8] C. P. a. L. Dai. Time domain synchronous ofdm based on compressive
sensing: A new perspective. In Global Communications Conference
(GLOBECOM), 2012.

[9] Xing Lin, Yebin Liu, Jiamin Wu, and Qionghai Dai. Spatial-spectral
encoded compressive hyperspectral imaging. ACM Trans. Graph.,
33(6):233:1–233:11, November 2014.

[10] G.R. Arce, D.J. Brady, L. Carin, H. Arguello, and D.S. Kittle. Compres-
sive coded aperture spectral imaging: An introduction. Signal Processing
Magazine, IEEE, 31(1):105–115, Jan 2014.

[11] Claudia V. Correa, Henry Arguello, and Gonzalo R. Arce. Snapshot
colored compressive spectral imager. J. Opt. Soc. Am. A, 32(10):1754–
1763, Oct 2015.

[12] Hoover Fabian Rueda Chacon and Arguello F Henry. Spatial super-
resolution in coded aperture- based optical compressive hyperspectral
imaging systems. Revista Facultad de Ingenieria Universidad de
Antioquia, pages 7 – 18, 06 2013.

[13] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo. An aug-
mented lagrangian approach to the constrained optimization formulation
of imaging inverse problems. IEEE Transactions on Image Processing,
20(3):681–695, March 2011.

[14] A. B. H. Alaya-Feki, S. B. Jemaa, B. Sayrac, P. Houze, and E. Moulines.
Informed spectrum usage in cognitive radio networks: Interference
cartography. In 2008 IEEE 19th International Symposium on Personal,
Indoor and Mobile Radio Communications, pages 1–5, Sept 2008.

[15] B. A. Jayawickrama, E. Dutkiewicz, I. Oppermann, G. Fang, and J. Ding.
Improved performance of spectrum cartography based on compressive
sensing in cognitive radio networks. In 2013 IEEE International
Conference on Communications (ICC), pages 5657–5661, June 2013.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2644


