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Abstract—Mobile Cloud Computing or Fog computing refer
to offloading computationally intensive algorithms from a
mobile device to a cloud or a intermediate cloud in order
to save resources (time and energy) in the mobile device.
In this paper, we look at alternative solution when the
cloud or fog is not available. We modelled sensors using
network of queues and use linear programming to make
scheduling decisions. We then propose novel algorithms which
can improve efficiency of the overall system. Results show
significant performance improvement at the cost of using some
extra energy. Particularly, when incoming job rate is higher,
we found our Proactive Centralised gives the best compromise
between performance and energy whereas Reactive Distributed
is more effective when job rate is lower.

Index Terms—Offloading, Mobile Cloud Computing, En-
ergy, IOT, Fog Computing, Edge Computing

I. INTRODUCTION

Usage of commercial off-the-shelf (COTS) smart devices
in defence and surveillance applications is an interesting
prospect. As an example application, imagine a swarm of
COTS drones flying and gathering visual intelligence on a
missing person or an armed terrorist (See Fig. 1). Reporting
raw data back to a base station is prohibitive in terms of
both time and energy. Even worse, if it is a covert defence
operation, it may open up the base to external attacks. So
some pre-processing must be done on the drone itself; for
example only report to the base once the individual is recog-
nised. For that, the drones must be able to run person re-
identification (PRID) algorithms for the targets appearing in
its Field Of View (FOV). The time complexity of the PRID
algorithms is substantially higher than other algorithms
running in the algorithm chain [1]. The drones may have
different computing and energy resources and depending
on the state of the device, it may not be able to complete
these processing in an allocated time. Traditional Mobile
Cloud Computing (MCC) in which jobs is outsourced to
the cloud may not be available or feasible depending on
the communication channel to the cloud [2]. Recently,
Fog/Edge computing has been introduced whereby mobile
devices offload nearby servers (preferably at base stations)
instead of cloud (see [3]). However, Fog computing could be
unavailable just like the cloud. (For example in underground
or battlefield far from the base station).

In this paper, we propose algorithms to balance the
computational load among the smart cameras for soft real-
time applications. For rest of this paper, we consider a
network of smartphones trying to run PRID algorithms
as our exemplar problem and make the assumption listed
below. However, the algorithms can be generalised to other
problems such as multistatic radar or sonar, distributed
audio processing etc.

Fig. 1: Nine Camera sensors and their FOV. Blue
square represents camera in a drone or a smart

phone

1) In a network of cameras, targets are spatially and
temporally distributed. That means, more targets may
appear in some cameras than others and at different
times. So, nodes may be able to help each other.

2) The jobs arriving at the node can be offloadable or
non-offloadable depending whether the offloader can
save time or energy by offloading the job to others
[4].

3) As long as the total job rates (across all nodes) is
less than the total computing capability of the network
of nodes, it should be possible to trade energy with
performance and productivity.

The problem we are trying to tackle is two fold. First,
we want to make a scheduling decision for offloadable jobs
among the nodes. Second, we need to determine the Node
State Information (NSI) that needs to be shared, and the fre-
quency, in order to make the scheduling decision. Queuing
theory abstracts our scheduling algorithms of the underlying
hardware. It means the system may consist of Central
Processing Unit (CPU) nodes or dedicated accelerators such
as Graphical Processing Unit and Field Programmable Gate
Array and also, we avoid the need to take the decision for
each and every tasks. This work extends our previous work
[2], where sensors take decision using simple cost functions
and on task by task basis. Also the scenario is changed
as in this work we do not consider cloud at all. Wu et.
al [5] have used queuing theory approach for MCC but
their focus is on offloading to the cloud and availability
of communication channels. In this paper, we use linear
programming to make the scheduling decision. Then we
propose a purely distributed solution where nodes only need
to communicate to neighbouring nodes directly connected to
them. Based on where the solver is executed and how data is
shared, we propose four novel algorithms and compare their
performance with the non-offloading case. In summary, the
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Fig. 2: A sensor node modelled as network
of queues. CPU, WR, WS represent CPU,

WiFi Receiver and WiFi Sender queues
respectively

main contributions of this paper are as follows:

• Propose novel algorithms for on-line workload balanc-
ing for real-time applications in distributed systems.

• Propose Offloading Cost function that incorporates NSI
such as battery level, bandwidth and CPU availability.

• Show the proposed algorithms improve the perfor-
mance of the overall network of battery powered sensor
system compared to Non Offloading (NO) system.

In the next section, we model the node network using
a network of queues and formally define the problem.
Section III details the proposed algorithms. In section IV,
we describe the experimental settings and the results of the
simulations. Finally we discuss and conclude our findings
in section V.

II. SYSTEM MODEL

Let us model a network of sensors depicted in Fig.
1. Following the notation in [6], let G = (N,A) be a
directed network defined by a set N of n nodes and a
set A of m directed arcs. Each arc (i, j) ∈ A represents
a communication link (for example WiFi) from node i to
j, and has an associated cost cij that denotes cost per unit
flow on that arc.

A. Node

Each node i is a smartphone or a similar device with a
CPU, WiFi, cellular link and a camera. We use M/M/1
queues to model behaviour of each of these components.
Specifically, the M/M/1 has First Come First Service
(FCFS) scheduling discipline, an arrival process that is
Poisson and service time that is exponentially distributed
[7]. Similarly, for the communication part, we model WiFi
using two M/M/1 queues (sender and receiver side).
We assume a common WiFi send and receive rate (i.e
µiWS = µiWR = µiWF ). The resulting model of the
node is depicted in Fig. 2. Each node i can be defined as a
tuple {γi, γi0, µi, µiWF } where γi is the rate of offloadable
jobs, γi0 is the rate of non-offloadable jobs, µiCPU is the
service rate of CPU, µiWF is the WiFi transmission rate.
We define this node information as Node State Information
(NSI). Each individual target that passes through a camera’s
FOV generates an offloadable job. Jobs that are integral to
the node itself such as operating system load and algorithms

which do not benefit from offloading are termed as non-
offloadable jobs. They may be spatially and temporarily
distributed as well like the offloadable jobs.

B. Network of Queues

A network of queues is defined as an open network
if there are external jobs coming into the system. Such
networks can be modelled using the Open Jackson network
[7]. Vilaplana [8] used it for modelling cloud computing
paradigm. The Open Jackson network states that the arrival
rate for a queue a ∈ {1, ..., k} is given by Eqn.(1). Based
on this formulation, we can calculate the incoming and
outgoing job rates of all the queues in our system.

λa = γa +
k∑

b=1

pbaλb (1)

where,
γa is the rate of arrival of external targets
λb is the arrival rate at queue b,
pba is the prob. a job but moves from queue b to queue a

C. Problem Formulation

We formulate the scheduling decision problem as a
minimum cost flow problem (Eqn. (2)) with constraints that
all the jobs get scheduled and without compromising the
stability of the queues. The decision variable xij ∈ R(n×m)

represent the job flow on an communication link (i, j) ∈ A.
xii is the job rate that is executed locally. We can guarantee
the rate stability of a queue by ensuring the average arrival
rate is less than the average service rate. Hence, if the
average incoming job rate for the CPU queue in a node is
greater than its service rate, we should look for alternatives.
The equality constraint in (2b) makes sure that all the jobs
are assigned whereas the inequality constraint in (2c) makes
sure that the jobs can be processed by corresponding nodes
they are assigned. This formulation uses NSI from all the
nodes (n) and makes decision for all the nodes simultane-
ously. The cost function for the problem is described in the
section II-E.

X = argmin
x

n∑
i=1

n∑
j=1

cijxij (2a)

subject to (s.t.)
n∑

j=1

xij = γi, ∀i ∈ N (2b)

n∑
j=1

xji + γi0 � µiCPU , ∀i ∈ N (2c)

xij ≥ 0 (2d)

The solution of Eqn. (2) can be rewritten as a decision
matrix shown below:

X =


x11 . x1i . x1n
. . . . .
xi1 . xii . .xin
. . . . .
xn1 . xni . xnn

 (3)

decision vector: We define each row of X as a
decision vector(dv). The dvi tells node i how it should
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process the incoming targets. Also, it is seen easily that
ith column of the matrix indicates how other nodes are
offloading to ith node.

D. Distributed solution

Given the time varying nature of the job arrival rate, we
need to solve the problem in Eqn. (2) frequently. Each node
only cares about its own column and row of the decision
matrix X . We later see in section II-F that the complexity
of the problem depends on n and m which is the total
number of nodes and arcs respectively. So we simplify
the problem by primal decomposition whereby each node
calculates its own dv. This is similar to the Gauss-Siedel
like method used by Meskar [9] for MCC. The algorithm
basically communicates with its immediate neighbours to
see what they can offer and takes the decision. The approach
is not selfish as it considers neighbours’ resources rather
than offloading everything. The problem is defined below
for each node i ∈ N . It is different from the central problem
in Eqn.(2) as that each node i only tries to minimise the
cost of its own objective function on the basis of information
available on its immediate neighbours.

dvi =argmin
x

n∑
j=1

cijxij (4a)

s.t.
n∑

j=1

xij =γi;
n∑

i=1

xji + γi0 � µiCPU ;xij ≥ 0 (4b)

E. Cost function

Once we are certain that all the arriving jobs can be
scheduled such that the queues are all rate stable, we would
like to achieve it with the minimum cost. We define the cost
function cij as the cost of scheduling a unit job from node
i to node j as shown below.

cij=


ω3Li, if i = j
ω1D(f+1)

BWij
+ ω2Bi

Bj
+ ω3Lj , if i 6= j, (i, j) ∈ A

∞, if i 6= j, (i, j) /∈ A
(5)

where, D is the data size
f is the average retransmission times (see Eqn. 6a)
BWij is the expected bandwidth between node i and j
Bi, Bj are the remaining battery in node i, j
Li, Lj is the number of jobs already in node i, j
ω1, ω2, ω3 are weight factors

The cost comprises of three distinct components; the com-
munication cost and the remaining battery level and the
availability of CPU. Their significance can be changed using
the weighting factor ω1, ω2 and ω3.

1) Communication cost: The communication cost de-
pends on the expected bandwidth between two nodes, data
size and a retransmission factor f . As the communication
channel is not perfect thanks to various noise and interfer-
ence, we account them using the retransmission factor f .
In the experiments, we randomly sample Packet Delivery
Rate (PDR) between two nodes and use mean of the
geometric distribution to calculate the average number of
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Fig. 3: (a) Average no. of retransmissions required due to
imperfect channel. (b) Time complexity of various linear
problem solvers

transmissions to send the data from one node to another
(see Eqn. 6a). The relationship (see Fig. 3a) shows us that as
the PDR degrades, average number of retransmission rises
exponentially. For the simulations, we consider 0.5 as the
minimum PDR for any valid communication link.

f(PDR) = E[g(x;PDR)], where (6a)

g(x;PDR) = PDR(1− PDR)x−1,∀x ∈ {0, ..,∞} (6b)

2) Energy available: The second element of our cost
function is the ratio of battery level of the nodes.

3) CPU availability: We use number of existing jobs in
the CPU queues as the measure of CPU availability. Higher
number suggest low availabity and vice versa. This is also
applicable for self-processing in the scheduling decision
making.

F. Computational Complexity

The optimisation problem stated in Eqn. (2, 4) can be
solved using efficient linear programming techniques. Dual
Simplex and Interior Point algorithms are popular methods
of solving linear problems. Interior point algorithms are
considered to be efficient and also require less memory
than others. We performed experiments to gauge their
time complexity for different number of nodes and found
interior point to be the most efficient (see Fig. 3b). These
experiments were performed on a desktop computer with an
Intel Xeon processor and running MATLAB 2015a under
linux environment. The runtime of these algorithms on a
embedded device may be significantly higher but should
follow the similar pattern.

III. ALGORITHMS

In the previous section, we formulated the problem of
scheduling jobs as central and distributed problems. We
have selected a co-operative environment in which all the
nodes tries to achieve global objectives (i.e. process most
jobs in an allocated time). By co-operative, we mean if
a node sends a job to another node, the other node must
execute it. However, we consider the nodes are not selfish
and only offloads if required. We consider two data sharing
mechanism; proactive and reactive. As we will see in
Section IV, proactive is suitable when incoming job rate
is high and decisions have to be made often whereas the
reactive is more suited to quite environments. So depending
on how this data is shared amongst the nodes and where

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1427



the algorithms is run we propose following four algorithms.
We compare all four algorithms against the NO case when
we do not allow offloading at all.

A. Oracle (O)

The Oracle has access to all the sensor node’s NSI at all
times. The Oracle solves the cost minimization problem in
Eqn. (2) every second and sends dv to all nodes simultane-
ously. It is not feasible in practice but gives the best result
for comparison. Experiments show that even ignoring the
cost of communication of NSI and cost of executing the
solver, it consumes the most energy.

B. Proactive Centralised (PC)

This is a more realistic version of the Oracle. In this
method all the n nodes send NSI to a nominated server
which then solves Eqn.(2) and sends corresponding dv back
to each nodes. In simulation, the server has connection to
all the nodes but this isn’t necessary as NSI and dv can
be conveyed using multiple hops. We consider the cost of
communication of NSI as well as cost of executing the
solver. All other nodes are obliged to follow the decision
made by the server and computes and offloads based on the
dv until a new one is broadcast. We want to investigate this
case to find out how often we can broadcast the NSI without
using too much communication resources Obviously, there
isn’t a single answer but it depends on many factors such
as the communication bandwidth, size of NSI, PDR and
number of nodes in the set. If there are n−1 nodes sending
their NSI to the server every t seconds, the queue with the
highest probability of being busy is the server’s receiving
queue. We analyse its performance below.

Arriving rate (λ) =
n− 1

t
(7)

Worst Service rate (µ) =
Data Rate× worst PDR

NSI size
(8)

Utilization (ρ) =
λ

µ
=

(n− 1)× NSI size
t× Data Rate× PDR

(9)
P [0] = 1− ρ

where, P [0] is the probability there is no jobs in the queue

Based on the arriving rate and service rate we can estimate
the peformance of server’s receive queue. For example, say
there are 11 sensors connected with a data rate of 54 Mbps,
PDR of 0.7 and NSI of 1 Mbits, send NSI every 10 seconds.
Then Eqn. (6a) estimates the queue utilisation is ≈ 0.03
and no waiting times for ≈ 97% of the time. Similarly
the average delay is around ≈ 0.03 seconds. Fig. 4 shows
waiting times at the receiving node at various intervals and
for different speeds.
C. Proactive Distributed (PD)

PD is similar to PC except for three main differences.
1) It is purely distributed. There is no server and each

node has to solve its own optimisation problem.
2) Instead of solving central problem in Eqn.(2), each

node only solves distributed problem in Eqn.(4).
3) Set N contains immediate rather than neighbours than

all the nodes. Even if total nodes is large (> 100), we
N may be limited to tens of nodes.
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0 2 4 6 8 10

U
ti

li
sa

ti
o
n
(%

)

0

20

40

60

80

100

11 Mbps (PDR=0.5)

11 Mbps (PDR=0.7)

11 Mbps (PDR=0.9)

33 Mbps (PDR=0.5)

33 Mbps (PDR=0.7)

33 Mbps (PDR=0.9)

54 Mbps (PDR=0.5)

54 Mbps (PDR=0.7)

54 Mbps (PDR=0.9)

Fig. 4: Queue utilisation of the server in proactive
under various network conditions and NSI update

frequency. NSI size set to 1 Mb.

D. Reactive Distributed (RD)

If only a few nodes get overloaded and infrequently,
transmitting NSI regularly can be a waste of energy. Also,
tail-end behaviour User Equipment (UE) may mean regular
transmission forces UE to stay in the high powered state
instead of the low powered idle state [10]. In this method
(see Alg. (1)), nodes only communicate when they need
help. The node seeking help broadcasts Request For Help
(RFH) and waits until the neighbours respond by sending
their NSI. Neighbouring nodes must respond if their average
CPU usage is less than a threshold. Once the node seeking
help receives NSI from other nodes, it formulates and
solves Eqn. (4). To avoid using old information and update
neighbour’s current situation, we also set a timer Tth after
which the node has to start again by broadcasting the RFH.

Algorithm 1 Reactive Distributed

if γi + γi0 ≤ µi then
Set dvi to not offload.

else
if RFH broadcasted & decision time < Tth then

Follow previous dvi
else

Broadcast RFH to all nodes.
Wait Twait seconds for NSI
if No of NSI received ≥ 2 then

Solve Eqn.(4) for new dvi and follow it.
else

Broadcast RFH again, follow previous dvi.
end if

end if
end if

IV. SIMULATOR AND EXPERIMENTAL RESULTS

We use the simulator [2] which uses a utilisation based
model by Jung et. al [10] and their parameters for Google
Nexus I phone to estimate the energy consumption of the
nodes. The simulator has evolved to accommodate targets
moving in three dimensions (such as drones). The simulator
is set up to simulate nine smartphones placed on a 3×3 grid
as shown in Fig. 1. For this paper, the exact number and
the configuration is chosen empirically. In future, different
setting will be explored. Each blue square representing
a smartphone can detect targets passing through its FOV
represented by blue/yellow cone shape in the figure. For
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Fig. 5: (a) Target arrival rate per nodes over simulation time.
(b) Targets dropped over Arrival Rate. (c) Power Consumed
over Arrival Rate (d) Efficiency Score of proposed algo-
rithms

target simulation, we used Random Waypoint Model (RWP)
[11]. In RWP, targets spawn at random locations in a
three-dimensional space. The targets either pause for certain
time or select its next destination. When it selects its next
destination it moves towards it with a random but constant
velocity; the process repeats until it moves out of the
platform. A non-uniform spatial phenomenon of the RWP
means that targets are concentrated in the middle of the
platform [11]. We use this phenomenon and irregular FOV
to simulate irregular loads among the nine sensors. Sensor
5, which is in the middle of the platform detects the highest
number of targets.

We ran 100 Monte-Carlo simulations for 20 minutes of
simulated time. The target spawning rate is higher than
dying rate, so target rate generally increases over time
across all nodes (see Fig. 5a). Every minute we take a
snapshot of targets dropped and energy consumed and plot
it as a function of target arrival rate (γ)(see Fig.5b, 5c).
As expected, Oracle gives the best results whereas NO
is the worst performer. PC gives the next best results,
however also consumes more energy. Upto 60% of the
total normalised arrival rate, RD and PD performs better
than PC and significantly better than the non-offloading
case. Yet the power consumption of RD is just marginally
higher than PC and PD is even lower than PC around that
point. However, the performance of distributed algorithms
significantly degrades as the target arrival rate goes up. Also,
Fig. 5c also shows lower power consumption at higher target
arrival rate for RD which also coincides with its fall in
performance. This is due to more neighbours being busier.
It shows that distributed algorithms may be best suited to
lower arrival rates whereas the centralised approach is suited
to the higher job arrival rates.

Next we define process score as the percentage of jobs

TABLE I: Simulation Results (Averaged over 100 runs)

Algo-
rithm

Arrival
Rate

(/min)

Service
Rate

(/min)

Process
Score

Energy
Used

(Joules)
NO 6.91 4.35 0.63 994
RD 6.91 5.34 0.78 1043
PD 6.91 4.84 0.70 1009
PC 6.91 5.84 0.85 1055
O 6.91 6.09 0.88 1062

successfully executed in the allocated times and efficiency
score as the ratio of Successful Executions to the energy
consumed [2]. We summarise the overall results in Table I
and Fig. 5d. There is almost a linear relationship between
performance and energy consumption in Fig.5d meaning
performance can be enhanced by spending extra energy.

V. CONCLUSION

In this paper, we modelled sensor network as network
of queues using Open Jackson network. We proposed var-
ious reactive and proactive algorithms which significantly
enhanced the performance of the system compared to the
NO scenario. The results reinforces our belief that we can
process all the jobs if, the total job rate is less than total
computing capability, and if other node’s NSI is available.
Also depending on normalised job arrival rate, reactive
distributed or proactive centralised may be more suited. It
is possible to formulate a hybrid strategy, which can switch
between them based on the job arrival rate. In future work,
we plan to run our algorithms on real dataset and dynamic
scenarios.
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