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Abstract—This paper presents a novel runtime-reconfigurable,
mixed radix core for computation 2−, 3−, 4− point fast Fourier
transforms (FFT). The proposed architecture is based on radix-
3 Wingorad Fourier transform, however multiplication is per-
formed by constant multiplication instead of general multiplier.
The complexity is equal to multiplierless 3-point FFT in terms
of adders/subtractors with the exception of a few additional
multiplexers. The proposed architecture supports all the FFT
sizes which can be factorized into 2, 3, 4 point systems. We also
show that the proposed architecture has the same bound on the
accuracy as the classical one.

Index Terms—Fast Fourier transform (FFT), Memory-based
FFT, Mixed radix

I. INTRODUCTION

Fast Fourier transform is an integral part of orthogonal
frequency division multiplexing (OFDM) system, which is
used in almost every communication application, e.g. 3GPP
long term evolution (LTE), wireless personal area network
(WPAN), wireless metropolitan area network (WMAN), and
other mobile applications. In order to design FFT processors,
various algorithms and architectures have been proposed over
the last four last decades. These can be divided into two types,
power-of-two and non-power-of-two. Certainly, the design
of non-power-of-two FFT processors are more challenging
because both data management and data processing is not
regular [1]–[6].

Over time, various FFT algorithms and architectures have
been proposed to design an efficient FFT processor. In order
to meet the requirements of applications, mainly two principal
FFT architectures are used: pipelined and memory-based [7]–
[10] . In general, memory-based is preferred, as it has several
advantages, such as low area or hardware resources occupied
by the architecture and low power consumption with complex
control logic. However, there are two important challenges
during its design: one is the conflict-free memory access and
other is the design of core for computation of butterflies
(small point FFTs or radices). The design of the core for a
single radix is relatively simple and a well-known subject.
However, the design of multiradix architectures still proposes
some challenges. Usually, multiradix architectures are used for
hardware cost reduction purposes. This is achieved by reusing
the adders and multipliers [1], [3], [11]. These cores are based
on mapping the all radices onto computations on the largest

radix. However, the radix-2/3/4 FFTs cannot be easily mapped
on the radix-4 by the usual approach. This is due to the fact
that radix-2/4 FFTs do not require any multiplication, while
radix-3 has one non-trivial multiplication.

In this paper, we propose to replace the general multiplier of
the radix-3 FFT by a constant multiplier and then to map the
radix-2 and radix-4 on the multiplierless radix-3 architecture.
As a result, we propose a core that is multiplierless and can
be configured by multiplexers for multiradix purposes. This
core can also be used for variable length FFTs, e.g. the 3GPP
LTE requires various transform sizes: 128, 256, 512, 1024,
1536, 2048 and 12−−1296 respectively [12]–[15]. Our design
neither requires the separate hardware for each radix, nor
requires the use of costly multiplier. Furthermore its accuracy
is not worse than the accuracy of the classic implementations.

The paper is organized as follows. We briefly review the
background on the individual architectures of 2, 3, and 4-
point FFTs in Section II. Then, we explain the main idea
behind the multiplier-less multiplication in fixed-point arith-
metic in Section II-C. Then, Section III presents the proposed
multiplierless architecture. In section Section IV we propose
a computer arithmetic based approach on the error analysis of
the obtained implementation. Finally Section V provides the
main conclusions of paper.

II. TECHNICAL PRE-REQUISITES

A. Radix-2/3/4 FFT

The Cooley-Tukey FFT algorithm [16] is based on the
decomposition of a large FFT into two small FFTs. This
decomposition is applied recursively until it reaches the small
point FFTs. The small FFTs are the basic processing elements
of the FFT computation, they are often referred to as butterflies
or radices.

The radix-2 FFT can be expressed as;[
X(0)
X(1)

]
=

[
1 1
1 −1

]
·
[
x(0)
x(1)

]
, (1)

where x(·) and X(·) represent the vectors of the input and
output sequences respectively.

The radix-3 FFT is the following computation:

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1374



X(0)
X(1)
X(2)
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1 1 1
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√
3
2
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2
i

1 −0.5 +
√
3
2
i −0.5−

√
3
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x(0)x(1)
x(2)
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Finally, radix-4 corresponds to
X(0)
X(1)
X(2)
X(3)

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ·

x(0)
x(1)
x(2)
x(3)

 . (3)

The Signal Flow Graphs (SFG) that represent the archi-
tectures of radix-2, 3, and 4 are shown in Fig. 1. The
SFG of radix-2, and 4 are based on the Cooley-Tukey FFT
algorithm, whereas the radix-3 SFG is based on Winograd
Fourier transform algorithm (WFTA).

B. Winograd Fourier Transform Algorithm

This algorithm has the minimum number of multiplications
at the expense of introducing a few extra additions [17].
Although WFTA is very efficient for small prime size FFTs,
for larger sizes the number of additions becomes too high for
practical implementations. In the WFTA, the FFT computation
equation is written as

[X(0)....X(N − 1)]T = O ·M · I · [x(0)....x(N − 1)]T , (4)

where I is a matrix corresponding to additions between inputs,
M is a diagonal matrix with the multiplications, and O is
a matrix corresponding to additions after the multiplications.
The advantages of such architecture is that the multiplication
is either real or imaginary.

Denote c = r+ j · i to be a complex constant only with real
part r = cosα, i = 0, and x = xre + j · xim be a complex
variable. Then, the complex product Y = c · x has real and
imaginary parts that are computed with[

Yre
Yim

]
=

[
cosα 0

0 cosα

] [
xre
xim

]
, (5)

where imaginary part is zero. Conversely, multiplication of x
by a constant c with only imaginary part r = 0, i = sinα is
described as[

Yre
Yim

]
=

[
0 − sinα

sinα 0

] [
xre
xim

]
. (6)

These considerations are in the basis of the WFTA and
permit to transform (2) into (12). Therefore, WFTA requires
only a semi-complex multiplier for multiplication with com-
plex data and provides two times smaller hardware cost.

C. Fixed-Point Arithmetic

In exact arithmetic computations such a semi-complex mul-
tiplication would be easy to perform. However, in modern
digital systems, the memory registers with finite capacity are
used. Therefore, finite-precision arithmetic is used to represent
values and perform computations.

Consider 2’s complement Fixed-Point Arithmetic [18], [19].
In this arithmetic, real numbers are represented as integers

X(1)

X(2)

x(1)

x(2)

(a) Radix-2

x(1)

x(2)

x(0)

X(1)

X(2)

X(0)

-1.5

-0.866j

(b) Radix-3

X(3)

x(0)

x(2)

x(1)

x(3)

-j

X(0)

X(1)

X(2)

(c) Radix-4

Fig. 1. Signal flow graph of radix-2/3/4.

scaled by an implicit quantization factor. Such arithmetic
benefits from fast bit operations. However, some accuracy
concerns are related to such passage to finite precision.

Let r and i be the real and imaginary part of the complex
constant c. In our case we suppose that the input sequences are
scaled such that r < 1 and i < 1, i.e. we have only fractional
part to be represented. Therefore, if implemented with b bits,
the real and imaginary parts are stored in machine as integers
R, I ∈ z ∈ [2b−1, − 2b−1 − 1] ∩ Z, which are obtained by

R = b2b−1 · cosαe, I = b2b−1 · sinαe, (7)

where b.e represents the rounding operation (round to nearest).
Therefore, the Fixed-Point counterparts of r and i are R·2−b+1

and I · 2−b+1 respectively. The quantization error ε depends
on the chosen rounding mode. In case of truncation, we obtain
that

−2−b+1 ≤ ε < 0. (8)

Another issue that inevitably follows the coefficient quanti-
zation is that the additions and multiplications are performed
with finite number of bits as well, which may lead to com-
putational errors. After being propagated, these errors may be
significantly amplified. This issue will be addressed in Section
IV.
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TABLE I
NUMBER OF OPERATIONS OF SMALL POINT FFTS.

Size adds/subs trivial mults non-trivial mults
Radix-2 2 0 0
Radix-3 6 0 2
Radix-4 8 1 0

III. PROPOSED ARCHITECTURE

The architecture of radix is obtained by direct implemen-
tation of the SFG from Fig. 1, which requires a number of
hardware components equal to operations. Table I present the
number of operations of each radix respectively. Here, under
a trivial multiplication we mean multiplication by −j that can
be simply performed by swapping the real and imaginary part
of data. As result, it does not influence the overall hardware
cost. It can be seen from the Table I that there is no single
radix on which we could to map the rest of the radices: radix-
3 is the only one to have a multiplier but it lacks two adders
for the radix-4 architecture.

We, on the other side, propose to replace the classic WFTA
implementation by the multiplierless version, which introduces
additional adders instead of the multiplier, and enables us to
map the radix-2/4/FFTs on it.

A. Multiplierless radix-3 WFTA architecture

A single multiplication by a constant is used in radix-3
WFTA architecture. It is possible to use shift-and-add circuit
to efficiently implement the multiplication instead of general
multiplier.

Generally, the canonical signed digit representation is used
to reduce the number of non-zero digits with respect to
the simple binary representation and, therefore the number
of adders [20]. Further simplification is achieved by single
constant multiplication techniques [21], [22]. They exploit the
redundancy in the multiplication by single constant. Addition-
ally, improvement in accuracy and complexity can be achieved
by addition-aware coefficient quantization method [23].

Using these techniques proposed in [20]–[23], we obtain a
number of candidate coefficients whose fractional bits range
are tabulated in Table II.

The selection is based on specifications like adder cost
and coefficient quantization error ε. It can be observed that
three different techniques are required for different coefficient
wordlengths in Table II:
• using 2 adders

C ·A = −1j · ((A · 23 −A) · 24 −A)/27, (9)

• using 3 adders:

C ·A = −1j · ((A · 23 − x) · 27 − (A · 23 + x))/210, (10)

• using 4 adders

C ·A = −1j·((((A · 23 −A) · 22 − (A · 23 −A)) · 23

− ((A · 23 −A) · 22 − (A · 23 −A))) (11)

− (A · 23 −A) · 211)/214.

TABLE II
DIFFERENT QUANTIZATIONS OF THE NON-TRIVIAL COEFFICIENT

√
3

2
AND

NUMBER OF ADDERS TO REALIZE THE MULTIPLIERLESS STRUCTURE.

Fractional Bits Coefficient Adders ε

7 111× 2−7 2 1.12× 10−3

8 222× 2−8 2 1.12× 10−3

9 443× 2−9 3 7.91× 10−4

10 887× 2−10 3 1.85× 10−4

11 1774× 2−11 3 1.85× 10−4

12 3547× 2−12 4 5.86× 10−5

13 7094× 2−13 4 5.86× 10−5

14 14189× 2−14 4 2.42× 10−6

15 28378× 2−15 4 2.42× 10−6

x(1)

x(2)

x(0)

X(1)

X(2)

X(0)

<<1

>>1

 

<<3

<<3 <<7

>>10 -j

Fig. 2. Multiplierless architecture for radix-3 (Multiplication [−
√
3
2
j], 3

adders).

We selected the 10 − bit coefficient with 3 adders, which
has the coefficient quantization error bounded by 1.85×10−4.
Usually, the shifts are free of cost as they are hardwired. The
final multiplierless architecture is illustrated on the Fig. 2

B. Multiplierless unified radix-2/3/4 FFT

The multiplierless unified architecture is based on mapping
the 2/3/4-radix into a single processing core. First, we design
a multiplierless radix-3 FFT architecture. It contains enough
computational resources (adders and substractors) to map the
radix-2/4, the main challenge is to reduce the number of
multiplexers. To obtain this, it is important to find common
parts in the signal flow graphs that can be mapped without
multiplexers. Further, multiplexer can be avoided by setting
the unused inputs of the circuit to zero, which removes the
unnecessary connections of the circuit. Using these techniques,
a solution with only seven two-to-one multiplexers controlled
with two control signals, has been designed. The resulting
architecture is shown in Fig. 3. The input and output relations
are tabulated in Table III, where the dashes denote ”don’t care”
conditions and 0 denotes that the input should be zeroed for
proper operations. Finally, signals controlling the multiplexers
are shown in Table IV, where dash denotes “don’t care”
condition.

IV. ERROR ANALYSIS

Any practical finite precision implementation of the above
discussed classical and new FFTs will suffer from finite-
precision effects. Usually, for the finite-precision error anal-
ysis in signal processing domain a stochastic approach is
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Fig. 3. Multiplierless unified radix-2/3/4 FFT.

TABLE III
INPUTS AND OUTPUTS OF PROPOSED ARCHITECTURE.

Input configurations Output configurations

Index IN FFT size Index OUT FFT size
2 3 4 2 3 4

0 x(0) x(0) x(0) 0 X(0) X(0) X(2)
1 x(1) 0 x(2) 1 X(1) X(1) X(1)
2 0 x(1) x(1) 2 0 X(2) X(3)
3 0 x(2) x(3) 3 0 0 X(0)

used: the quantization and computational errors are seen as
a white uniformly distributed noise added to the signal. Such
a statistical modeling, described in details by Widrow [24] or
Constantinides [25], does not give precise values that the errors
can take but provides the average and variance that describe
the statistical dispersion of the error.

We, on the other hand, propose to perform accurate error-
analysis while exploiting the properties of Fixed-Point Arith-
metic. We will model the errors as intervals (tighter than
we usually deduce with statistical approach) and investi-
gate their propagation. In order to analyze the accuracy of
any implementation, we need to fully specify the way the
arithmetic operations are implemented in hardware. In our
implementations we ensure the following:
• Multiplication: our Fixed-Point multiplier, denoted ⊗,

guarantees that the product of two real numbers x and
y, that are represented with bx and by bits respectively,
is computed such that the output represented with b =
min{bx, by} bits has its error is bounded by

|x · y − fxp mul(x, y)|< 2−b+1

• Addition: we suppose that the input data is scaled such
that no over- or under-flow occur in the computations; and
since the operands will always be in the same format, no

TABLE IV
CONTROL SIGNALS TO OBTAIN DIFFERENT FFT SIZES.

FFT size s0 s1 s2

Radix-2 0 0 0
Radix-3 1 1 0
Radix-4 0 0 1

computational errors are introduced for the Fixed-Point
addition.

A. Classical WFTA radix-3 FFT
The classic WFTA radix-3 point FFT with a multiplier as

shown in Fig. 2(c) can be represented as

[X(0)....X(N − 1)]T = B4 ·B3 ·W · ·B2 ·B1[x(0)....x(N − 1)]T ,
(12)

where matrices Bi(3×3) contain only trivial terms (0, 1,−1)
and W (3× 3) contains the non-trivial coefficient. Such com-
putation can also be represented as an implicit system of linear
equations: {

Jt = Nx
y = Lt

(13)

where

J =


−1 0 0 0

B2 −1 0 0

0 W −1 0

0 0 B3 −1

 , N =


B1

0

0

0

 , (14)

L =
(
0 0 0 B4

)
and J ∈ C12×12, N ∈ R12×3, L ∈ R3×12; and 1, 0 ∈ R3×3

are identity and zero matrices respectively.
Quantization errors: using the bound (8), we know that

instead of J we actually implement the quantized to b bits
matrix Jq := J −∆J , where

|∆Ji,j |≤
{

2−b+1, if Ji,j is the non-trivial coefficient
0, otherwise

(15)

Therefore, instead of system (13) we compute{
Jqt = Nx
y = Lt

(16)

Multiplication errors: consider the above assumptions
concerning Fixed-Point multiplication and that the wordlength
of non-trivial factor

√
3
2 is at least equal to the the wordlength

of the input. Then, instead of the exact vector t, we actually
compute t̂ := t−∆t, where

|∆ti|≤
{

2−b+1, if Ji,: contains non-trivial factor
0, otherwise (17)

Therefore, the actually implemented output ŷ is computed with{
Jq t̂ = Nx+ ∆t
ŷ = Lt̂

(18)

Then, for a given input vector x ∈ R3, the implementation
error of the radix-3 WFTA is bounded by:

||y − ŷ||≤
∣∣∣∣L (J−1 − J−1q

)
Nx− LJq∆t

∣∣∣∣ , (19)

where ||·||∞ is some norm. Thanks to the sparse nature of ∆J
and ∆t, the error bound (19) can be simplified:

||y − ŷ||≤ ||Q · x+ p|| , (20)
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with

Q =

 0 0 0
0 −2−b+1 2−b+1

0 2−b+1 −2−b+1

 , p =

 0
−2−b+1

2−b+1

 (21)

Matrix Q represents the impact of the coefficient quanti-
zation errors and vector p holds the impact of multiplication
errors to the final output.

Remark: Consider the case, when the coefficient
√
3
2 is

quantized to bc bits, and bc is less than the wordlength b of
the input/output of the FFT algorithm. Then, the bound p will
change to

p =

 0
−2−bc+1

2−bc+1


B. Multiplierless radix-3 point FFT

Similarly to the case of the WFTA radix-3 FFT, our multipli-
erless design can be represented as a system of linear equations
(13) but with slightly different matrix J . The difference
between two designs is the use of shifts and adds technique
instead of the multiplication. In order to show that the classic
and proposed designs have equivalent behavior in terms of
errors, consider following reasoning.

Quantization errors: the multiplierless architectures that
we proposed in Section III-A are based on coefficients that
have already been quantized (error bounds are given in Table
II). Therefore, we obtain that modeling (15) holds.

Multiplication errors: if the additions in multiplierless
architecture are performed with enough guard bits (it can be
shown, that only 2 bits are required), then the error bound (17)
is satisfied as well.

Therefore, our modeling of the error propagation stays the
same and the new multiplierless design has an error bound
equivalent to the implementation with a multiplier (or better
if additions in the multiplierless multiplication are done with
care).

V. CONCLUSION

In this paper, we have presented a multiplierless archi-
tecture for the radix-3 WFTA and provided the shift-and-
adders specifications for the non-trivial constant quantized
to the 6 − 14 bits, which covers the majority of real-life
applications. This radix-3 multiplierless architecture permitted
us to map the radix-2 and 4 classical FFTs upon it. The
proposed universal architecture requires only a few additional
multiplexers controlled by two control signals. Finally, we
proposed a new modeling for the Fixed-Point error analysis
of the classical WFTA and showed that the new multiplierless
design respects the same error bounds.
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