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Abstract—Global, explicit representations of nonlinearities are
desirable when implementing nonlinear Wave Digital (WD)
structures, as they free us from the burden of managing look-
up tables, performing data interpolation and/or using iterative
solvers. In this paper we present a method that, starting from
certain parameterized PieceWise-Linear (PWL) curves in the
Kirchhoff domain, allows us to express them in the WD domain
using a global and explicit representation. We will show how
some curves (multi-valued functions in the Kirchhoff domain)
can be represented as functions in canonical PWL form in the
WD domain. In particular, we will present a procedure, which, in
the most general case, also returns the conditions on the reference
port resistance under which it is possible to find explicit mappings
in the WD domain.

I. INTRODUCTION

Wave Digital (WD) structures are known to be very effective
for building stable and efficient digital filters [1] and digitally
emulating physical systems which can be represented as ana-
log circuits [2]. For these reasons, they proved to be suitable
for Virtual Analog modeling [3], [4]. WD structures are based
on the linear port-wise transformation (1)

a=v+ Ri b=v—Ri , (D
which maps Kirchhoff (K) variables, i.e. port voltage v and
port current ¢, into WD variables (scattering waves), i.e.
incident wave a and reflected wave b, R being a free parameter
called port resistance. Most WD structures with one nonlinear
(NL) element [5], [6] can be efficiently implemented in a
systematic fashion [7]. NL WD elements are generally imple-
mented using look-up tables [8] or iterative solvers [9], even
though alternative techniques exist [10]. However, disposing
of canonical PieceWise Linear (PWL) representations [11] of
nonlinearities in the WD domain would be very useful for
many reasons. The main reason is that canonical PWL rep-
resentations are global and explicit; therefore, they eliminate
the need of using look-up tables and/or iterative techniques
for computing the reflected waves, leading to implementations
with low computational cost and low storage requirements.
Moreover, they are extremely flexible, as they allow us to
model the nonlinearity with arbitrary accuracy, tuning the
number of vertexes and segments accordingly. Some papers
in the literature present PWL representations of nonlinearities
in the WD domain [8], [12], [13]; however, a global PWL
representation appears only in [5]. Nevertheless, as will be
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outlined in this paper, the formulas in [5] are valid only in a
limited number of cases.

In Section II of this paper we will describe the canonical
PWL representation of a scalar nonlinearity in the WD do-
main. In Section III we will provide a generalized version of
the theoretical contributes offered in [8] and [5] that describe
the conditions under which it is possible to derive explicit wave
mappings, starting from parametrized curves in the K domain.
In Section IV we will present a novel procedure that, given
ordered vectors of vertex coordinates of a PWL curve in the
K domain, returns the ranges of values of the port resistance
allowing us to find an explicit wave mapping. Moreover, if
an explicit wave mapping exists, it is shown how a canonical
PWL representation can be derived. Section V shows that the
procedure presented in Section IV lead to simplified conditions
on the port resistance if applied to monotonic increasing and
decreasing functions in the K domain. Finally, examples of
applications to the Shockley diode model and the Chua’s
resistor are shown.

II. CANONICAL PWL REPRESENTATION

A canonical PWL representation for a generic single-valued
wave mapping b = h(a) with a finite number of jump
discontinuities can be written as [11]

N
b:M0+u1a+Z(nj\a—aj|—i—ujsgn(a—aj)) ()

Jj=1

where |.| indicates the absolute value, sgn is the sign function,
N +1 is the number of segments (from the leftmost with index
7 = 0 to the rightmost with index j = N), N is the number
of vertices with coordinates (a;,b;) (from the leftmost with
index 7 =1 to the rightmost with index 7 = IN) and

w1 = 0.5 (mo +mp)

nj =05(m; —mj—1) j=1,...,N

0, if fy(a) is continuous at a = qa;
vi =
’ 0.5 (h (a;r]\z —h(a;)) , otherwise
o = h(0) =325 (njla;| — visgn (a;))

where m; is the slope of the j-th segment and it is defined as

bjt1 —b;
mj = J i
aj+1 — Gj

j=1...,N—-1. 3)
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For the sake of simplicity, but without loss of generality, let us
assume the slopes of the leftmost and the rightmost segments,
corresponding to the intervals [—oo,a;] and [an,+0o0], to
be mg = my and my = my_1, respectively. However, in
general, it is possible to obtain a canonical PWL representation
in the form (2) if and only if

a1 <ax<---<an 4

which, again, corresponds to saying that the function » must be
single-valued and with a finite number of jump discontinuities.
The WD domain coordinates are grouped in the two vectors
ap = [ai,... ,an]T, where T denotes transposition, and bp =
[b1,...,bx]T, which will be used in the following Sections.

III. FROM A CURVE IN THE KIRCHHOFF DOMAIN TO AN
EXPLICIT WAVE MAPPING

A general method based on parametrization, for finding
explicit wave mappings in canonical form, can be formalized
combining the theoretical findings offered in [5] and [8]. Let
us start from a generic PWL curve in the K domain, i.e. in
the voltage-current v — ¢ plane. The curve is composed of
N+1 segments and N vertices with coordinates (v, ij) being
1 <k < N. The set of coordinates {(v1,41),...,(vn,in)} is
ordered according to an oriented path, which follows the curve
characteristic. In general, this can be done by introducing
a parameterization of the curve, as explained in [11] (see
Section II.C, p. 919) with generic PWL unicursal curves.
Parameterizing the curve means obtaining two single-valued
functions in the form v(p) and i(p), where p is a common
parameter. Therefore, the coordinates of each vertex are ob-
tained as vy = v (px) and i, = i (px) with px > pr—1 and
1 < k < N. If the reference curve is a current-controlled or a
voltage-controlled single-valued function (with a finite number
of jump discontinuities), ordering the set of coordinates is
straightforward, as we set p = 7 or p = v. Now, according
to (1) we can express the wave variables as

a = fa(p) =v(p)+ Ri(p)
b= fo(p) =v(p) — Ri(p)
where f, and f, are NL functions of p. An explicit wave

mapping can be found if and only if f, admits an inverse f, '
such that

o)

b=fy (f, ' (a)) . (6)

fa 1s invertible, if it is strictly monotonic. However, as
canonical forms can accommodate also jump discontinuities
[11], traditional conditions on f,, discussed in the literature
[5], [8], can be relaxed; it suffices that f, be either a non-
decreasing or a non-increasing function. Therefore, setting

dvp = (vg41 —wvg) and Oip = (ig41 —ig), one of the
following two conditions must be met
dvg + R <0 3

for each 1 < k < N. As our goal is to derive a function h
in canonical PWL form (2), such that i (a) = f, ((f ! (a))),
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we need to find the coordinates (a;,b;), which satisfy (4).
In order to do this, let us define the vectors of coordinates

vp = [v1,...,on]T and ip = [i1,...,in]T, such that the
corresponding points in the WD domain have coordinates

ap = vp + Rip b, = vp — Ri, 9)
where a, = [a1,...,an]" and b, = [by,...,bx]T are

not necessarily equal to vectors a, and by, already defined
in Section II. In particular, it can be easily verified that if
condition (7) is met, the set of points in the WD domain is
characterized by non-decreasing a-coordinates. Therefore, as
(4) holds, we set ap, = a, and b, = by,. Conversely, if (8)
is met, the set of points in the WD domain is characterized
by non-increasing a-coordinates and in order to satisfy (4),
we need to set a, = Qap and b, = Qf)p, where Q is a
permutation matrix with all ones in the counter-diagonal, i.e.
Q flips the order of the elements of the multiplied vector.
As far as we know, this last consideration has never been
mentioned in the literature.

IV. CONDITIONS ON THE PORT RESISTANCE

In this Section we present a procedure that, given an ordered
set of points on a curve in the K domain, returns the range
of all port resistances for which it is possible to obtain a
corresponding wave mapping in canonical PWL form. The
returned range might also include negative port resistances,
which are not used in traditional WD filters. The returned
range might also be the empty set. The procedure is fully
general and it works for whichever kind of PWL curve. In
particular, in two separated Subsections, we will show how to
find the values of the port resistance R satisfying (7) or (8). As
a guiding example, let us consider the PWL curve on the v —4
plane in Fig. 1 on the left. It is a multi-valued function, both
if we consider 7 or v as independent variables. The relative
ordered vectors of coordinates are the following

vp = [-0.5,-0.7,-0.9, —1.5,-0.45,0,0.95, 1.5,0.8,0.7]7
ip = [-1.3,-1,-0.7,-0.2,0.3,0,—0.4,0.25,0.75,1,1.25]7 .
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Fig. 1. On the left a PWL curve in the Kirchhoff domain. On the right the
corresponding transformed curve in the WD domain representable in canonical
PWL form. The chosen port resistance is R = 1.4.

A. Non-decreasing case

We want to find the range of values of R satisfying condition
(7), that can be rewritten as

R Z 7(51}]4/|5ik| ,
R < +5@k/|(5ik| 5

if dip >0

10
if dip <0 (10)
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for each 1 < k < N. It may also happen that di;, = 0; in this
case, R > —oo if dv;, > 0 and R = 0 if dv;, < 0, where 0
denotes the empty set.

Let us express the system of inequalities (10) in an alternative
form, defining a vector ¥ = [71,...,7x_1]7, such that

F=—(€oq) where
e = [él,...,éN_l]T = [5’1)1/|5i1|,...,5UN_1/|5iN_1|]T s
a=1Id,...,av_1]" = [sgnt (6i1),...,sgnT (Fin_1)]" ,

o indicates the Hadamard or element-wise product and
sgn™ (z) returns +1 if 2 > 0 or —1 if 2z < 0.
In our example we have
& =[—-0.667,—0.667, —1.2,2.1,1.5,2.375,0.846, —1.4, —0.4, —0.4]T
El = [17 17 17 1-, _la _17 17 17 1’ I}T
F =[0.667,0.667,1.2,—2.1,1.5,2.375, —0.846, 1.4,0.4,0.4] 7 .

—“NWAUIONOOO
T T
[

n

o r

Fig. 2. Graphical representation of the system of inequalities derived from
condition (7). The unknown is the port resistance R on the z-axis. The index
n on the y-axis refers to the nth element of vector ¥ and q.

We now search for a range of values of R for which all the
N —1 inequalities (7) hold. The resulting system of inequalities
can be represented graphically as in Fig. 2, where circles in
bold represent the elements 7, with 1 < n < N and the black
half lines indicate for each inequality the admissible range of
values of R. Notice that if ¢, = 1 the nth half line starts from
7y, and goes to 4-o00; conversely, if ¢, = —1 it starts from 7,
and goes to —oo. Searching for a range of R values satisfying
all the inequalities is now feasible, comparing all the N — 1
ranges represented by the half lines. However, such task can
be performed much more efficiently in an automatable fashion,
if we reorder the elements of r and q as follows.

Let r = [ry,...,7ny_1]7 be a sorted version of T, whose
elements are now in non-decreasing order and let P, be the
corresponding permutation matrix such that r = P,.r. We use
the same permutation to reorder the elements of q and we
define a vector q = [q1,...,qn_1]7 such that q = P,q.

In our example we have

r =[-2.1,—-0.846,0.4,0.4,0.667,0.667,1.2,1.4, 1.5, 2.375]T
q= [15 17 1a 17 17 17 17 17 _17 _I]T .

Fig. 3 shows the same information of Fig. 2, however it is
structured according to the ordered vectors r and q. In Fig. 3
the circles in bold represent the elements r, with 1 < n < V;
if g, = 1 the nth half line starts from r,, and goes to +o0;
conversely, if ¢, = —1 it goes to —oo. We notice from Fig. 3
that we can now easily find the range of R values satisfying
the whole system of inequalities simply considering the half
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Fig. 3. Graphical representation of the system of inequalities derived from
condition (7). The unknown is the port resistance R on the z-axis. The index

n on the y-axis refers to the nth element of vectors r and q. The colored
range is the solution of the system of inequalities.

lines with indexes n = 8 and n = 9, as all the elements of q
up to gs = 1 are equal to 1, g9 = g0 = —1 and the elements
of r are in a non-decreasing order by definition. Therefore,
the searched range of values is 1.4 < R < 1.5, as it can be
verified by looking at Fig. 3.

Notice that, in general, a suitable range of R values exists
if and only if ones and minus ones in vector q are in two
separable subvectors made of consecutive elements of q and
the subvector of ones precedes the subvector of minus ones.
Such subvectors can also be empty. More precisely, we can
find exactly the range of port resistances satisfying (8) as

Tn S R S Tn4+1 if (QH - Qn+1) =2 and [Qna Qn+1] is
the only pair of consecutive elements

of q such that |¢, — ¢n11]| = 2

R<r if g = —1 for each k
R>ryn_1, if g = +1 for each k
R=0 , otherwise .

(1D
where 1 <k < Nand 1 <n< N.

Going back to our example, let us set R = 1.4, so that,
applying (9), we can find the following vectors of coordinates
in the WD domain

ap = [~2.32,-2.1,-1.88,—1.78,-0.03,0,0.39,1.85,1.85,2.1,2.35]7

b, = [1.32,0.7,0.08, —1.22, —0.87,0, 1.51, 1.15, —0.25, 0.7, —1.15] 7
As condition (7) is met, i.e. we are in the non-decreasing case,
we can set ap = ap and by = Bp. Fig. 1 on the right shows
the resulting explicit wave mapping. As we set R equal to one
of the two interval limits of the allowed range 1.4 < R < 1.5,
we expect a jump discontinuity appearing in the PWL wave
mapping; in fact, we have ag = a9 = 1.85. As mentioned
in Section II, jump discontinuities can be handled in a global
and explicit fashion, if a canonical PWL representation of b =
h(a) is used (2).

B. Non-increasing case

Similarly to what done in Subsection IV-A, we want to find
the range of values of R satisfying condition (8), that can be
rewritten as

R < —Jvk/|6ik| , if dip >0
R > +éui/|0ig] if dip <0

for each 1 < k < N. It may also happen that di, = 0; in this
case, R =0 if dvy, > 0 and R < +o0 if v, < 0.

(12)

1167



2017 25th European Signal Processing Conference (EUSIPCO)

Let us introduce the vector d = [dy,...,dx_1], defined as
d = —q, in addition to the already described vector r.
In our example of Fig. 1 we have

d=[-1,-1,-1,-1,-1,-1,—-1,-1,1,1]T

The resulting system of inequalities is graphically represented
in Fig. 4, where circles in bold represent the elements r,, with
1 < n < N and the black half lines indicate for each inequality
the admissible range of values of R. Notice that if d,, = 1 the
nth half line starts from r,, and goes to +oc0; conversely, if

d, = —1 it starts from r,, and goes to —oo.
10 ;
9r o—— |
8 ° 1
g °
e 8 °
2 4
4 o
3 2
22— o
: I I ‘ ‘
-2 -1 0 1 2
R

Fig. 4. Graphical representation of the system of inequalities derived from
condition (8). The unknown is the port resistance R on the x-axis. The index
n on the y-axis refers to the nth element of vectors r and d.

Notice from Fig. 4 that no R satisfies the system of inequali-
ties. This is apparent if we look at vector d, which is composed
of a subvector of minus ones followed by a subvector of ones.

In general, we can exactly find the range of port resistances
satisfying (8) as

rn < R<rpy1, if (dy—dps1) =2 and [d,,dpiq] is
the only pair of consecutive elements

of d such that |d,, — dy41] =2

R<nr if d, = —1 for each &k
R>ry_1, if d, = +1 for each &k
R=0 , otherwise .

13)

V. EXAMPLES OF APPLICATION
A. Monotonically increasing functions

Monotonically increasing functions in the K domain can
be always parameterized by v or i (voltage-controlled case
or current-controlled case). Let us assume that, once the
independent variable is chosen, the coordinates of the vertexes
are put in increasing order, starting from lower values. In
that case, dvgy > 0 and dip > 0 for each 1 < k < N.
We also assume R > 0, as negative port resistances are not
used in traditional WD structures. It follows that, condition (7)
reduces to R > —dvy /i) and it is always true. Conversely,
condition (8) reduces to R < —dvy/dix and it is always false
for R > 0. Therefore, in practice, it is always possible to find
an explicit wave mapping in canonical PWL form starting from
monotonically increasing PWL functions in the K domain and
using whichever R > 0. Moreover, we are always sure that
condition (7) is met, while condition (8) is not; therefore, the
order of the vertexes of the PWL curve is preserved passing
from the K to the WD domain.
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Fig. 5. Diode-based Envelope Follower. Fig. 5(a) shows the circuit in the
K domain and Fig. 5(b) shows the corresponding WD structure. Parameters:
C=10""F L=10"%H, Royt = 5000  and Ry = 3 Q.

1) Shockley diode model: As an example, we will con-
sider the Shockley diode model, that is characterized by the
monotonically increasing function i (v) = I, (1 — e*/ (1)),
where I, is the saturation current, n is the ideality factor
and V; is the thermal voltage. We will assume [, = 1
PA, 7 = 1 and V; = 25 mV. In the literature [14]—
[16], a corresponding analytical wave mapping, b = a +
RI,—2nVt W ((RIeBL:+a)/ V) /(nVt)), employing the
Lambert function W has been proposed.

10 T

— Vin
— 4
> PWL
~ —-—- Lambert
« 57 ]
N
0 ) | | h h | h i

16 2 25 3 35 4 45
time (seconds) %107

0.5

—_

Fig. 6. Comparison between the signal V., obtained with the W function
approach and the same signal obtained with the PWL approach. The signal
(green line) of the input generator is V;p, = e (t) [sin (27 fint) | with e (t) =
Gint/tm if t < tm/2 and e (t) = gintm/t if t > tm /2, where fi, = 3
kHz, gin = 20, t;m, = 2.5 s and sampling frequency Fs = 48 KHz.

Here we will compare two WD implementations in the MAT-
LAB environment (processor 3.1 GHz Intel Core i7) of the
envelope detector in Fig. 5(a). One implementation uses the
wave mapping with the W function (lambertw in MATLAB)
for implementing the diode. The other implementation is
based on the canonical PWL approach (eq. (2)) and the
v-coordinates of the vertices are organized in the vector
vp = [-2,-18,...,-0.2,0,0.002,...,0.798,0.8]7, for a
total of 411 vertexes. In both cases the WD structure is the one
in Fig. 5(b). As we can see from Fig. 6 the results obtained
from the two implementations are very similar. However, the
circuit simulation takes on average 4.75 seconds using the
formula with the W function, while it takes 0.27 seconds using
the proposed PWL approach.

B. Monotonically decreasing functions

Also monotonically decreasing functions in the K domain
can be always parametrized by v or i. Let us assume that, the
coordinates of the vertexes are put in increasing order with
respect to the independent variable, starting from lower values.
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Let us firstly consider the case in which i is the independent
variable; we will have dip, > 0 and dvry < O for each
1 < k < N. Therefore, condition (7) reduces to R > ry_1,
where ry_1 > 0 and, being the slope of segment k defined
as 0vg/dik, —ry—1 is the slope with the largest module.
Conversely, condition (8) reduces to R < rq, where r; > 0
and —7; is the slope with the smallest module.

Let us then consider the dual case in which v is the
independent variable; we will have dv;, > 0 and dip < 0
for each 1 < k < N. This time, dvy /dix can be defined as the
“reciprocal slope” of segment k. It follows that condition (7)
reduces to R < ry, where 1 > 0, and —r; is the “reciprocal
slope” with the smallest module. Conversely, condition (8)
reduces to to R > ry_1, where rny_1 > 0 and —rpn_q is the
“reciprocal slope” with the largest module.

1) Chua’s resistor: One common definition of the neg-
ative Chua’s resistor with 4 segments is i(v) = g¢g1v +
0.5(90 — g1) (|[v + Bp| — |[v — Bp|). Here we will assume
g = —5x107% gy = =8 x 107* and B, = 1, as in
[5]. We pick the v-coordinates of the vertexes as vp =
[-2,-1,0,1,2]7. According to the previous considerations
about v-controlled monotonically decreasing functions, we
have that (7) is met if and only if R < —1/g;, i.e. R < 1250,
and (8) is met if and only if R > —1/gq, i.e. R > 2000.

We will now implement the Chua’s resistor in the WD
domain, using both the explicit PWL wave mapping proposed
in [5] (eq. 17) and the approach presented in this paper; then,
we will compare the results. For this purpose, let us pick 48
values of R uniformly distributed in the ranges 0 < R < 1250
and 2000 < R < 3000. Let us define the wave quantities
a=v+Riand b,.y = v— Ri. Then we define bys, which is
computed using the formula in eq. 17 proposed in [5] with a
as input signal, and bp, which is computed using (2) and the
approach described in this paper, again with @ as input signal.
Let us now sample the variable v from —5 V to 5 V with
a sampling step of 0.1 for a total of 100 samples. Then we
use the formula of the Chua’s resistor i (v) for computing the
corresponding samples of i. Consequently, we can compute
also the samples of the wave signals a, b,.¢, by and bp for
each value of R. As we can use b,.y as a ground truth, let
us define the error indexes Ejr = (1/J) Z}']:1 |bref; — barjl
and Ep = (1/J) E}']:1 |brerj — bpj|, where bycrj, bp; and
byr; are the samples of the wave signals, j is the subscript
indicating the jth sample and J is the number of samples for
a fixed value of R. Fig. 7 shows that, while E'g is always equal

4 T T T T T

* E %0q
sl Ep | %00y, |
o By 9000000,
ol ]
1k i
0
250 750 1250 2000 2500 3000
R

Fig. 7. Comparison of Ej; and Ep for different values of R.

to 0, i.e. the proposed PWL approach always works, Ep is
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much higher both for R = 1250 and for R > 2000. In fact, it
can be verified that the formula in [5] (eq. 17) works properly
only when the condition (dvg + R dix) > 0 is satisfied.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method for determining the
values of the port resistance for which it is possible to find an
explicit scalar wave mapping starting from an arbitrary PWL
curve in the K domain. We also showed how to represent
a curve in the WD domain using a canonical PWL repre-
sentation, which is global and explicit. We are now working
to extend this method to more general definitions of wave
variables [17] and to multi-dimensional nonlinearities, using
generalized canonical PWL representations [18].
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