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Abstract—In this paper, joint frequency and 2-D direction of
arrival (DOA) estimation at sub-Nyquist sampling rates of a
multi-band signal (MBS) comprising of P disjoint narrowband
signals is considered. Beginning with a standard uniform rect-
angular array (URA) consisting of M = Mx ×My sensors, this
paper proposes a simpler modification by adding a N − 1 delay
channel network to only one of the sensor. A larger array is
then formed by combining the sub-Nyquist sampled outputs of
URA and the delay channel network, referred to as the difference
space-time (DST) array. Towards estimating the joint frequency
and 2-D DOA on this DST array, a new method utilizing the
3-D spatial smoothing for rank enhancement and a subspace
algorithm based on ESPRIT is presented. Furthermore, it is
shown that an ADC sampling frequency of fs ≥ B suffices,
where B is the bandwidth of the narrow-band signal. With the
proposed approach, it is shown that O(MN/4) frequencies and
their 2-D DOAs can be estimated even when all frequencies alias
to the same frequency due to sub-Nyquist sampling. Appropri-
ate simulation results are also presented to corroborate these
findings.

Index Terms—Joint frequency-direction of arrival estimation,
sub-Nyquist sampling, Space-time array, ESPRIT, Uniform rect-
angular array, Multiple-delay architecture.

I. INTRODUCTION

Of late, the quest for improving the degrees of freedom
with fewer physical elements has drawn considerable attention.
Primarily, this is motivated by the fact that over recent years,
although the cost of physical elements such as sensors have
come down, the deployment (which requires several addi-
tional components) and the maintenance cost is still higher.
Encouraged by these recent developments, in this paper we
consider the important problem of joint frequency and 2-
D DOA (i.e., azimuth and elevation) estimation of multi-
band signal (MBS) (i.e., multiple disjoint narrow band signals
spread within the wide spectrum), under the scenario where
the number of sources can exceed the number of sensors. This
typically find applications in cognitive radio (CR) [1], radar,
communications ([2], [3]) etc. Further, it has also been well
established that in these applications a wide spectrum has to
be sensed [4]. Thus, it is not only important but essential
to estimate these parameters at sub-Nyquist sampling rates;
which not only eliminates the necessity of high sampling rate
ADC, but also overcomes the subsequent high rate operations.

In literature, many methods such as [5] - [9] have been
proposed for frequency and DOA estimation at sub-Nyquist
sampling rates for the case of M > P , where M and P
denotes the number of sensors and sources respectively. Based
on the above methods and the recent advancements in array

processing and sub-Nyquist sampling schemes, [10] - [12]
proposed methods to address the case of M < P . While
[10] employed a nested sensor array [13] based architecture,
[11] and [12] considered to use a multi-coset sub-Nyquist
sampler [14] at the output of every sensor. In practice, a multi-
coset receiver is realized through a multi-channel architecture
and hence requires more hardware channels to implement the
methods of [11], [12]. Thus, for the problem considered in
this paper, the existing methods either requires a newer array
geometry or would require more hardware.

In this paper, we assume a standard uniform rectangular
array (URA) configuration and propose an efficient method
for joint frequency and 2-D DOA estimation for the case of
M < P at sub-Nyquist sampling rates. Based on the idea of
[8], the architecture is suitably modified by adding a N − 1
channel delay network at only one sensor. By assuming the
sources to be uncorrelated, we describe a process for obtaining
a larger array referred as the Difference Space Time (DST)
array. Although URA is a 2-D uniform array, this DST array
would be a 3-D uniform array; two dimensions corresponding
to spatial delay and the third dimension corresponding to
a temporal delay. With this modification, a new rank en-
hancement method and a corresponding estimation algorithm
based on ESPRIT [15] is presented for estimating automati-
cally paired parameters. Later in Section III-D we show that
with the proposed approach and for a URA comprising of
M = Mx ×My sensors and a single N − 1 channel delay
network (number of ADC channels = M + N − 1), upto
P ≤M(N−1)/4 carrier frequencies and their 2-D DOAs can
be determined. Further, it will be shown that if the bandwidth
of the narrow-band signal does not exceed B, then a minimum
overall sampling rate of (M +N −1)B would be sufficient to
estimate the above mentioned number of carrier frequencies
and their 2-D DOAs which shall also be corroborated through
simulation results.

II. SIGNAL MODEL AND PROBLEM DESCRIPTION

We assume P uncorrelated, disjoint, far-field, narrow-band
signals which are spread within a wide spectrum of F =
[0, 1/T ], impinging on a URA comprising of M = Mx×My

omnidirectional sensors. Let x(t) denote the combination of P
narrow-band signals referred to as multi-band signal (MBS),
which can be expressed as

x(t) =

P∑
p=1

sp(t)e
j2πfpt (1)
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where sp(t), 1 ≤ p ≤ P denotes the pth narrow-band source
signal whose bandwidth doesn’t exceed B, and further B �
1/T . {fp}Pp=1 denotes the unknown carrier frequencies that are
spread within F . Further, the disjoint band assumption implies
that the unknown carrier frequencies are distinct i.e.,fp1 6=
fp2 , for all p1 6= p2 and 1 ≤ p1, p2 ≤ P . Since the carrier
frequencies are unknown, the Nyquist sampling rate of x(t) is
fnyq = 1/T . Let us assume a symmetric URA whose sensor
array locations are given by

Sura = {dI[mx my],−bMx/2c ≤ mx ≤ dMx/2e − 1,

−bMy/2c ≤ my ≤ dMy/2e − 1} (2)

where I denotes the identity matrix, mx,my ∈ Z and d ≤
c/2T ; c is the wave propagation velocity. Now, the signal
observed by the above URA can be expressed in the following
form as

xs(t) = (Ax � Ay)︸ ︷︷ ︸
As

s(t) + η(t) (3)

where the spatial array manifold matrices for k = x and k = y,
Ak = [ak(f1, θ1, φ1), ..., ak(fp, θP , φP )] and ak(fp, θp, φp) =

[ej2π(d/c)bMk/2cωkp , ...1, ..., e−j2π(dMk/2e−1)(d/c)ωkp ]T , s(t) =
[s1(t)ej2πf1t, ..., sP (t)ej2πfP t]T , ωxp = fp cos θp sinφp and
ωyp = fp sin θp sinφp. {θp, φp}Pp=1 denotes the 2-D DOA of
the pth source, d denotes the distance between the adjacent
elements both along x-axis as well as along y-axis and η(t)
denotes the noise vector which is white and uncorrelated with
the signal. Let us sample xs(t) at a sub-Nyquist sampling rate
of fs = 1/LT i.e., the ADCs samples at every t = nLT ,
where L denotes the sub-sampling factor. The sub-sampled
signal xs(n) can be expressed as

xs(n) = Ass(n) + η(n). (4)

Now, the discrete time Fourier transform (DTFT) of xs(n),
Xs(f) can be expressed as [7]

Xs(f) = AsS(f) + η(f) (5)

where S(f) = [S1(f), S2(f), ..., SP (f)]T , Sp(f) denotes the
periodic aliased spectrum of the pth source signal.

As mentioned earlier, x(t) is assumed to be a wideband
signal and hence 1/T will be a large quantity and hence
sampling at Nyquist rate may not be feasible. Thus the aim
of this paper is to estimate the parameters {fp, θp, φp}Pp=1 at
sub-Nyquist sampling under the scenario that the number of
sources can exceed the number of sensors i.e., P > M . Further
we would like to achieve the above stated goals without
enormously increasing the hardware complexity.

Now, observe from {ωxp , ωyp}Pp=1, that the carrier frequencies
and DOAs appear in non-separable form and estimating the
triple {fp, θp, φp}Pp=1 from these two quantities is not possible.
Further, the signal is sampled at sub-Nyquist sampling rates
making it difficult to estimate the carrier frequencies from the
sub-sampled x(n). Hence, besides suitably modifying the ar-
chitecture which can aid in estimating the carrier frequencies,
the recovery approach must also facilitate joint estimation of
these parameters in order to overcome the association problem.
The following section describes the proposed approach for
achieving the above stated goals.

III. PROPOSED METHOD

We begin the description of the proposed approach by
briefly describing the modified architecture based on multiple
delay architecture of [8] and the process of obtaining the DST
array is then outlined. Followed by this, we provide the details
of the estimation algorithm for estimating automatically paired
parameters.

A. Multiple Delay Architecture

Recall from the previous section that URA is symmetric
(see (2)). The receiver architecture is modified by adding an
N −1 channel delay network {qτT}N−1q=1 to the sensor placed
at the origin as shown in Fig. 1. The delay factor can be in
the range 0 < τ ≤ 0.5. In order to minimize the hardware
complexity, the delay network is added only to one sensor.
All the ADCs are synchronized and they sample at a sub-
Nyquist sampling rate of fs = 1/LT . As also observed in [8]
the delay network can easily be realized by a simple cascaded
network comprising of N identical delay elements, which
forms the key attractive feature compared to the architectures
of [11], [12]. Let xdq(t), q = {1, 2, ..., N − 1} be the signal
corresponding to the qth temporal delay channel, which can
be expressed as (using (1))

xdq(t) =

P∑
p=1

sp(t− qτT )ej2πfp(t−τT ) + ηdq (t)

≈
P∑
p=1

sp(t)e
j2πfpte−j2πfpτT + ηdq (t). (6)

The combined DTFT expression after sampling at fs for all
N − 1 delay channels can be written as

Xt(f) = [a(f1), a(f2), ..., a(fP )]︸ ︷︷ ︸
At

S(f) + ηd(f) (7)

where for any 1 ≤ p ≤ P , a(fp) =
[1, e−j2πfpτT , e−j2πfp2τT , ... , e−j2πfp(N−1)τT ]T . In the
following section we combine (5) and (7) and describe a
method for generating a larger array referred as DST array.

Fig. 1. Example of a multiple delay architecture considered in this paper.
Notice that the delay channel network is added to the sensor placed at the
origin.
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B. Difference Space Time Array

Let the combined spatial and temporal delay network DTFT
be represented by Xst(f) = [Xs(f),Xt(f)]T . Xst(f) can be
expressed as

Xst(f) =

(
As
At

)
︸ ︷︷ ︸

Ast

S(f) + N(f). (8)

Using the above equation, we form the following covariance
matrix

Rstxx =

∫
f∈F

Xst(f)XHst(f)df

= Ast
(∫
f∈F

S(f)SH(f)df
)

︸ ︷︷ ︸
Rss

AHst + σ2
nI (9)

where Rss denotes the source covariance matrix. Due to the
assumption of uncorrelated sources, Rss will be a diago-
nal matrix with the elements captured by the vector λ =
[σ2
s1 , σ

2
s2 , ..., σ

2
sP ]T , where σ2

sp denotes the power of the pth

source. By vectorizing Rstxx, it can be expressed as

z = vec(Rstxx) = (A∗st ⊗ Ast)vec(Rss) + σ2
n1

= (A∗st � Ast)λ+ σ2
n1

=


A∗s � At
A∗t � As
A∗s � As
A∗t � At

λ+ σ2
n1 (10)

where ′∗′ denotes the conjugate operation, ′⊗′ and ′�′ denotes
the Kronecker product and Khatri-Rao product respectively.
The simplification from the Kronecker product to Khatri-
Rao product is due to the diagonal structure of Rss. From
the structure of Ast, it can be observed that (A∗st � Ast)
contains rows corresponding to the difference sensor locations
or in other words, (A∗st�Ast) enumerates an array which we
refer as difference array. Furthermore, it can be observed that
difference array in general will be larger and would contain
several virtual sensors. Let zdstmx,my,mτ (mx, my , mτ denotes
the sensor locations along the x, y and z-axis respectively)
denote a subset of z corresponding to the rows of (A∗s � At)
and (A∗t � As) which may be written as

zdstmx,my,mτ =

(
A∗s � At
A∗t � As

)
︸ ︷︷ ︸

Adst

λ+ σ2
n1. (11)

Recalling the symmetrical structure of URA (see (2)) and
As = Ax�Ay , it may easily be observed that Adst enumerates
a bigger 3-D uniform array i.e., spatial delay due to URA
along two dimensions and temporal delay along the third
dimension. We refer to this 3-D uniform array as difference
space time array (DST) whose sensor locations are given by
Sdst =

{I[dmx dmy τmτ ],−bMx/2c ≤ mx ≤ dMx/2e − 1,

−N ≤ mτ ≤ N,−bMy/2c ≤ my ≤ dMy/2e − 1} (12)

An example of a DST array for Mx = My = N = 3 is shown
in Fig. 2 . While the sensors indicated by blue depicts the
actual sensors, sensors indicated by red indicates the virtual
sensors. The bigger DST array compared to size of the actual
physical sensing elements can clearly be noticed from the
figure. It is to be noted that although Adst is a bigger array, λ
however is a column vector and hence the existing algorithms
cannot be directly applied. Thus, in the following section, we
present a new approach for estimating parameters with this
bigger DST array.

Fig. 2. Example of a DST for Mx = My = N = 3. Blue sensors shows
the actual sensors, while the sensors shown in red depicts the virtual sensors.

C. Estimation algorithm

In this section, we first outline a 3-D rank enhancing
algorithm based on the idea of spatial smoothing [15] and
then describe an ESPRIT based algorithm capable of jointly
estimating the frequencies and their corresponding 2-D DOAs.

1) Rank enhancing covariance matrix formulation: Let
Adst = Adstx � Adsty � At, where for k = x and k = y,
Adstk is of size Md

k × P , Md
k = dMk/2e and [Adstk ]mk,p =

e−j2π(d/c)(mk−1)ω
k
p . It is now easy to express zdstmx,my,mτ =

Adst∆mx
x ∆

my
y ∆mt

t λ, where ∆mx
x , ∆

my
y , ∆mt

t are diagonal
matrices whose (p, p)th element is given by e−j2π(d/c)mxω

x
p ,

e−j2π(d/c)myω
y
p and e−j2πmtfpτT respectively. The rank en-

hanced covariance matrix of the DST can now be formed as
Rdst =

dMx/4e−1∑
mx=−bMx/4c

dMy/4e−1∑
my=−bMy/4c

dN/2e−1∑
mτ=−bN/2c

zdstmx,my,mτ (zdstmx,my,mτ )H

(13)
2) Joint frequency and 2-D DOA estimation: We first

determine the singular vectors Us corresponding to the P
largest singular values of Rdst. In the noise-free setting it can
easily be shown that Us and Adst spans the same subspace
and hence Adst = UsTR, where TR denotes a full rank
transformation matrix of size P × P .

Now, let us define the transformation matrices αfl =
[0 IN−1], αfr = [IN−1 0] ∈ RN−1×N . Also defined are
the transformation matrices αxl , αxr ∈ RMd

x−1×M
d
x , and αyl ,

αyr ∈ RM
d
y−1×M

d
y which are similar to αfl and αfr . Further,
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let us define the following

βfl = (IMd
xM

d
y
⊗αfl ) ∈ RM

d
xM

d
y (N−1)×M

d
xM

d
yN (14)

βfr = (IMd
xM

d
y
⊗αfr ) ∈ RM

d
xM

d
y (N−1)×M

d
xM

d
yN (15)

βxl = (IMd
yN
⊗αxl ) ∈ R(Md

x−1)M
d
yN×M

d
xM

d
yN (16)

βxr = (IMd
yN
⊗αxr ) ∈ R(Md

x−1)M
d
yN×M

d
xM

d
yN (17)

βyl = (IMd
xN
⊗αyl ) ∈ RM

d
x (M

d
y−1)N×M

d
xM

d
yN (18)

βyr = (IMd
xN
⊗αyr) ∈ RM

d
x (M

d
y−1)N×M

d
xM

d
yN (19)

where Ik denotes an identity matrix of order k. Now, us-
ing the above transformation matrices we can express the
following relationships, βfl Adst = βfrAdstΩf , βxl Adst =
βxrΠ1AstΩx and βyl Adst = βyrΠ2AdstΩy . Here, Ωf =
diag{e−j2πf1τ , e−j2πf2τ , ..., e−j2πfP τ},
Ωx = diag{ej2π(d/c)ωx1 , ..., ej2π(d/c)ωxP },
Ωy = diag{ej2π(d/c)ω

y
1 , ..., ej2π(d/c)ω

y
P } and Π1, Π2 are

permutation matrices such that for any matrices A,B,C,
Π1(A � B � C) = B � C � A and Π2(A � B � C) =
C � A � B. Substituting Adst = UsTR and simplifying, the
above equations can be expressed as Ψf = (βfrUs)†βfl Us =
TRΩfT−1R , Ψx = (βxrΠ1Us)†βxl Us = TRΩxT−1R and Ψy =
(βyrΠ2Us)†βyl Us = TRΩyT−1R . Since the transformation
matrix of these equations are identical, by combining we can
form the following equation

Ψ(f,x,y) = Ψf +Ψx+Ψy = TR(Ωf +Ωx+Ωy)T−1R . (20)

Now, it can easily be noticed that the eigenvectors of Ψ(f,x,y)

are nothing but the transformation matrix TR. Upon estimating
this transformation matrix, Ωf ,Ωx and Ωy can be estimated
with the same permutation order using Ωf = T−1R ΨfTR,
Ωx = T−1R ΨxTR and Ωy = T−1R ΨyTR. The arguments
of Ωf ,Ωx,Ωy shall provide the triple {f̂p, ω̂xp , ω̂yp}Pp=1 from
which the frequencies and their 2D-DOAs can easily be
estimated.

If in addition to the carrier frequencies and DOAs, signal
x(t) is required then by assuming P ≤ M + N − 1, the
array manifold matrix Ast can be formed with the estimated
parameters and using (8), S(f) can be estimated, from which
the the signal x(t) can easily be determined.

D. Identifiability and minimum sampling rate

Proposition 3.1: With URA comprising of Mx×My sensors
and a N − 1 channel delay network outlined in Section III-A,
and further assuming sources to be uncorrelated, the P carrier
frequencies and their 2-D DOAs are recoverable almost surely
(assuming no-noise) if
i) L ≤ 1/BT
ii) ωxp1 6= ωxp2 + m,ωyp1 6= ωyp2 + m, fp1 6= fp2 , for all
1 ≤ p1, p2 ≤ P, p1 6= p2,m ∈ Z
iii) P ≤ min{Md

xM
d
y (N − 1),Md

x (Md
y − 1)N, (Md

x −
1)Md

yN}.
Due to lack of space, only a brief outline of proof is provided
here. As mentioned earlier (refer (5)) that Sp(f) is a periodic
spectrum corresponding to the pth source with period fs =
1/LT . Since the bandwidth of sp(t) cannot exceed B, in order

to avoid aliasing (i.e., Sp(f +mfs) ∩ Sp(f + (m+ 1)fs) =
∅,m ∈ Z), fs ≥ B or L ≤ 1/BT . For the ESPRIT algorithm,
DST manifold matrix Adst must be full rank. Since Adstx , Adstx
and At are Vandermonde matrices, if the second condition of
the proposition is satisfied then by [16, Theorem 3], Adst will
be full rank almost surely. By observing the row-sizes of the
transformation matrices (14) - (19), the maximum number of
identifiable parameters can easily be proved. �

Now, the first condition implies that a sampling frequency
of fs ≥ B would be sufficient and since the configuration
consists of M = MxMy sensors and N − 1 channel delay
network, the minimum overall sampling rate fpropmin = (M +
N − 1)B and since B � 1/T , fpropmin � fnyq. With this
minimum sampling rate assuming Mx and My to be even and
N < Md

xM
d
y , from third condition upto Pmax = M(N−1)/4,

i.e., O(MN/4) carrier frequencies and their 2-D DOAs can
be estimated.

Most importantly, the limit provided here is for the extreme
case when all the sources exactly alias to the same frequency.
However, when the bands are separated (most often the case
in practice), many more carrier frequencies and their DOAs
can be estimated by applying the above approach to each
individual filtered band. The following section corroborates
these results through simulations.

IV. SIMULATION RESULTS

Simulations are performed to test the capability and per-
formance of the proposed approach described in the previous
sections. In all our simulations, we assume F = [0, 5] GHz,
narrowband signal bandwidth B = 10 MHz, the number of
sensor elements Mx = My = 3 and the delay factor τ = 0.5.
Further, for all the results presented here, we chose the extreme
case where all the carrier frequencies exactly alias onto the
same frequency due to sub-Nyquist sampling.

First, we conducted simulations to test the capability at min-
imum sampling rate as discussed in the previous section. To
demonstrate this capability, we assumed N = 10 and fs = 10
MHz. We fixed P = 18 since upto 18 carrier frequencies and
their DOAs can be estimated with the chosen choice of the
configuration (see Proposition 3.1). It is important to notice
that since fs = B = 10 MHz, all the bands will exactly
alias between [0, 10] MHz. A very high SNR of around 40dB
was assumed for this simulation and Fig. 3 shows the actual
and the estimated frequency and the 2-D DOAs (azimuth and
elevation). The figure clearly shows that despite all the bands
exactly aliased and P > M , the frequency and their 2-D DOAs
are estimated with very good accuracy and are close to actual
values (note that under noise-less condition the estimation will
be exact).

Next, we conducted simulations to test the performance of
the proposed approach. For this simulation we chose P = 12
and fs = 250 MHz (i.e., downsampling factor L = 20).
The carrier frequencies chosen were separated by a factor
of 250 MHz, so that after sampling they all alias to the
same frequency band. Due to space constraint, instead of
providing separate performance plots corresponding to each
of frequency and DOAs, since P < M+N−1, the combined
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Fig. 3. Actual and estimated carrier frequencies and their 2-D DOAs for
P = 18.

reconstructed spectrum performance plot (as described in
Section III) is provided. For the sake of comparison, the
performance obtained with a benchmark array i.e., the space
time array constructed by adding the N − 1 channel delay
network to all the sensors (hardware complexity same as that
of [12]) is provided, which also serves as a good lower bound.
Note that the same estimation algorithm as outlined in Section
III-C2 (without the rank enhancement step) can be used for
estimation on this benchmark array. Fig. 4 shows the root mean
squared error (RMSE) performance of the proposed approach
for different values of N and the benchmark array. For the
benchmark array we have fixed Mx = My = 3 and N = 10.
It is important to note that for this configuration, the bench-
mark array requires M(N − 1) channels (i.e., 81 channels)
and operates on a covariance matrix of dimension 90 × 90,
whereas the proposed approach requires only M + N − 1
(9+N−1) channels and operates on a much smaller dimension
of Md

xM
d
yN ×Md

xM
d
yN (for this case it is 4N × 4N ). The

performance improvement with increase in N can clearly be
noticed from the figure. In particular, observe that for N = 30
the performance is very close to the benchmark array. It is
important to note the reduction of the overall sampling rate
in addition to the reduction of the hardware and computation
as mentioned above; while the overall sampling rate with the
proposed approach is about 9.5 GHz (for N = 30), but with
the benchmark array it requires about 20.25 GHz.

V. CONCLUSION

In this paper, a new scheme for joint frequency and 2-
D DOA estimation at sub-Nyquist sampling rates using a
standard URA comprising of M = Mx ×My is presented.
The receiver architecture is modified by adding an N − 1
delay channel network to one element. By combining the
URA and the delay channel network outputs a larger DST
array is formed and a sub-space algorithm based on ESPRIT
is presented. With this proposed approach, it is shown that
one can jointly estimate O(MN/4) frequencies and their 2-D
DOAs. These results are further verified through simulations.
The advantage of the proposed scheme (as also demonstrated
through simulations) can be leveraged to not only reduce
the number of sensors but also to obtain huge savings in
computation and in sampling rates.
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Fig. 4. Comparison of RMSE vs SNR for the reconstructed spectrum for
different delay channels and the benchmark array.
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