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Abstract—In Compressed Sensing, a real-valued sparse vector
has to be recovered from an underdetermined system of linear
equations. In many applications, however, the elements of the
sparse vector are drawn from a finite set. Adapted algorithms
incorporating this additional knowledge are required for the
discrete-valued setup. In this paper, turbo-based algorithms for
both cases are elucidated and analyzed from a communications
engineering perspective, leading to a deeper understanding of
the algorithm. In particular, we gain the intriguing insight that
the calculation of extrinsic values is equal to the unbiasing of a
biased estimate, and present an improved algorithm.

I. INTRODUCTION

In many communication scenarios, the transmitted vector

x ∈ R
L×1 is sparse, i.e., only s elements are non-zero.1 The

receive vector y ∈ R
K×1, s ≪ K < L, is corrupted by i.i.d.

zero-mean Gaussian noise n, with variance σ2
n per component.

The channel can then be modeled by

y = Ax+ n , (1)

where A ∈ R
K×L corresponds to the channel matrix in terms

of communications engineering. Since K < L, a sparse vector

has to be recovered from an underdetermined system of linear

equations, a problem which is known as Compressed Sensing

(CS) [1]. In many communication scenarios, however, the non-

zero elements are not real-valued but drawn from a finite set

C. If the sparsity is fixed, the problem to be solved is given

by (C0
def
= C ∪ {0})

x̂ = argmin
x̃∈CL

0

‖y −Ax̃‖22 s.t. ‖x̃‖0 = s . (2)

There are many fields of digital communication in which this

problem of estimating a discrete-valued sparse vector from an

underdetermined system of linear equations is present, such as,

e.g., sensor networks, where a fusion center with K antennas

has to reconstruct which of the L low-activity sensors have

currently been active, and which data has been transmitted

by them [2]. Further applications are peak-to-average power

reduction in orthogonal frequency-division multiplexing [3],

This work was supported by Deutsche Forschungsgemeinschaft (DFG)
under grant FI 982/8-1.

1Notation: ||·||p denotes the ℓp norm. A(l,m) = Al,m is the element in the

lth row and mth column of A. AT and A−1 denote the transpose and the
inverse of A, respectively. diag(a) denotes a diagonal matrix of appropriate
size with entries of the vector a as diagonal elements. diag(A) denotes a
diagonal matrix with the same diagonal elements as A. I is the identity
matrix. QC(·): element-wise quantization w.r.t. a given alphabet C. E{·}:
element-wise expectation. Var{·}: variance. N (m, v): Gaussian distribution
with mean m and variance v. fX(x): probability density function of random
variable x.

the detection of pulse-width-modulated signals in radar appli-

cations [4], code-book excited linear prediction (CELP) source

coding [5], and Compressed-Sensing-based cryptography [6].

There is a tremendously wide range of algorithms solving

the standard continuous-valued CS problem, such as, amongst

others, Orthogonal Matching Pursuit (OMP) [7], Iterative Hard

Thresholding (IHT) [8], and Iterative Soft Thresholding (IST)

[9]. Although the standard CS problem is non-convex due to

its sparsity constraint, it can be relaxed to a ℓ1-based problem,

which can efficiently be solved by the simplex algorithm or

interior point methods [10].

In the case of discrete Compressed Sensing, however, ad-

ditional information, i.e., the knowledge that the elements

of the sparse vector are from a finite set, is available and

has to be taken into account adequately. The estimation

of a discrete-valued vector has combinatorial complexity in

general, and hence discrete CS is non-convex, even if the

constraint in problem (2) was relaxed to an ℓ1-based one,

which could be solved by extensions of the simplex algorithm

[10]. Unfortunately, these algorithms have a prohibitively high

computational complexity.

Some algorithms for the solution of problem (2) have

been proposed over the last few years. Besides the most

obvious approach of a standard CS algorithm with subsequent

quantizer [11], the quantization can be included inside OMP

[13], which equals the so-called model-based Compressed

Sensing [12] if it is applied to discrete CS. This algorithm

has been further improved by the application of a method

which preserves reliability information [13]. Another improved

variant of OMP has been introduced in [14], where a minimum

mean-squared error estimator has been applied.

Other algorithms for the CS problem are related to well-

known channel decoding algorithms, e.g., the approximate

message-passing (AMP) algorithm [15], [16], which is derived

from the message-passing algorithm [17] and which can be

easily adapted to cases (such as discrete CS) where informa-

tion on the a-priori distribution of the sparse vector is available

(Bayesian AMP, BAMP) [15]. Moreover, the knowledge from

channel coding has also been used for the optimization of

measurement matrices with adapted specialized recovery algo-

rithms, cf., e.g., [18], [19]. The drawback of these approaches

is that the restrictions on the measurement matrix limit the

range of applications.

In [20], [21], an approach which is based on the turbo-

principle has been proposed, cf. also [22]. It has been simpli-

fied, generalized, and adapted to the discrete setup in [23]. In
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this paper, this algorithm is further improved, thereby includ-

ing knowledge from the field of digital communications into

CS. The aim of this paper is to gain a profound understanding

of the algorithm. An analysis of the approaches leads to

intriguing insights into the algorithm, and especially into the

important topic of bias compensation. Note that the results

hold for standard CS and for discrete CS.

The paper is organized as follows. In Sec. II, the improved

algorithm is introduced. The analysis is given in Sec. III.

In Sec. IV, the performance of the algorithms is compared,

followed by brief conclusions in Sec. V.

II. TURBO SIGNAL RECOVERY

In [20], [21], an iterative algorithm for the estimation of

complex-valued sparse vectors has been presented. This al-

gorithm, which has been denoted as Turbo Signal Recovery

(TSR) (or Turbo Compressed Sensing), has been restricted to

one type of measurement matrices in the original work. In [23],

the algorithm has been generalized to a wider range of matrix

constructions, which allowed the comparison of TSR with

other algorithms. Furthermore, the notation of the algorithm

has been simplified. In this section, after a short explanation

of this modified algorithm, an improved version is introduced.

A. Approximate LMMSE TSR

In the generalized TSR algorithm, the measurement matrix is

assumed to be given by A = UC , where U is a random part

of a unitary matrix, and C = diag([c1, . . . , cL]) is a scaling

matrix. In the standard CS setup where the column vectors of

A are assumed to be normalized to unit length, the scaling

factors calculate to c2i = 1/
∑K

j=1 U
2
j,i.

The sparse vector is estimated in an iterative fashion, where

each iteration consists of two main parts: In the first part,

all elements of the vector are estimated jointly by a linear

estimator aiming to keep the Euclidean estimation error small,

thereby ignoring the sparsity and the alphabet constraint. In

the second part, the constraints which have been disregarded

in the first part are taken into account, which leads to a non-

linear estimator which generates so-called soft values [24].

The pseudocode of this algorithm is given in Alg. 1, Variant

A, i.e., only the lines tagged by an “A” are active.

The authors of the original TSR algorithm denote the

first step as linear minimum mean-square error (LMMSE)

estimation [20]. In this step, the sparse vector is estimated

by (cf. Alg. 1, Line 3)

x
post
M = x

pri
M +

c̄2σ2
M,pri

c̄2σ2
M,pri + σ2

n

·C−1UT(y −Ax
pri
M ) , (3)

where x
pri
M is a prior estimate (from the previous step), σ2

M,pri

is the variance of the estimation error of this prior estimate,

and c̄2 = 1
L

∑L

i=1 c
2
i is the average scaling factor. All variables

of this MMSE-estimation-step are marked by the index “M”.

In [23], it has been shown that with C ≈ c̄I , (3) can be

approximated by

x
post
M ≈ x

pri
M +

σ2
M,pri

c̄2σ2
M,pri + σ2

n

·AT(y −Ax
pri
M ) . (4)

Note that (when ignoring the scaling factor) this term cor-

responds to the first step in the well-known IHT algorithm

[8], which can, on the one hand, be interpreted as one step

of the gradient descent method, but, on the other hand, as

correlation-based estimation, since x is estimated based on

the correlation between the residual and the column vectors

of A. From a communications engineering point of view,

it corresponds to the application of a matched filter. Hence,

although claimed otherwise by the authors in [20], the first

step is not an LMMSE estimation.

In the second step, soft values are calculated, which are the

expected value of x conditioned to the prior estimate from

the first step and the a-priori distribution of x (cf. Alg. 1,

Line 8). Note that, in contrast to the joint estimation in the

first step, this calculation is performed for each element of

the sparse vector individually. Since this approach takes the a-

priori distribution of x into account, it depends on the alphabet;

an adaptation to any alphabet is straightforward. This approach

is also used in other algorithms for (discrete) CS, cf., e.g.,

[15], [23], [25], [13]. All variables of the second (soft-value

calculating) step are indicated by the index “S”.

This algorithm is denominated as TSR/Q in the following,

where the trailing “Q” emphasizes the final quantization step

which has to be performed in order to restrict the estimate to

the discrete alphabet.

Alg. 1 x̂ = recover
(

y,U ,C, σ2
n, s, C0

)

Variants: A: TSR/Q, B: TMS/Q

1AB: x
pri
M = 0, σ2

M,pri = s/L, A = UC
2AB: while stopping criterion not met {

// MMSE estimation

3A : x
post
M = x

pri
M +

c̄2σ2
M,pri

c̄2σ2
M,pri

+σ2
n

·C−1UT(y −Ax
pri
M )

3 B: x
post
M =x

pri
M +σ2

M,priA
T
(

σ2
M,priAAT+σ2

nI
)−1

(y−Ax
pri
M )

4A : σ2
M,post = σ2

M,pri ·

(

1− K
L

c̄2σ2
M,pri

c̄2σ2
M,pri

+σ2
n

)

4 B: K = σ2
M,priA

T
(

σ2
M,priAAT + σ2

nI
)−1

A

5 B: σ2
M,post = σ2

M,pri ·
(

1− 1
L

∑L

i=1 Ki,i

)

6AB: σ2
S,pri = σ2

M,ext =

(

1
σ2
M,post

− 1
σ2
M,pri

)−1

7AB: x
pri
S = xext

M = σ2
M,ext

(

x
post
M

σ2
M,post

−
x

pri
M

σ2
M,pri

)

// Soft feedback
8AB: xpost

S,i = E{xi|x
pri
S,i} = W(xpri

S,i, σ
2
S,pri, s)

9AB: σ2
S,post =

1
L

∑L

i=1 Var{xi|x
pri
S,i}

10AB: σ2
M,pri = σ2

S,ext =

(

1
σ2
S,post

− 1
σ2
S,pri

)−1

11AB: x
pri
M = xext

S = σ2
S,ext

(

x
post
S

σ2
S,post

−
x

pri
S

σ2
S,pri

)

12AB: }
13AB: x̂ = QC0(x

post
S )

B. Exact LMMSE TSR

After the introduction of TSR/Q in the previous section, an

improved version of the algorithm is introduced in this section.

To this end, the true linear MMSE estimate for x is derived.
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We assume the channel model (1), i.e., y = Ax + n, and

want an estimate x
post
M of x that minimizes the expectation of

the squared error given prior knowledge on x. In general, the

linear MMSE estimator is given by [26], [23]

x
post
M = x

pri
M +ΦddA

T

(

AΦddA
T + σ2

nI
)−1

(y −Ax
pri
M ) ,

where d is the error vector if x
pri
M = x + d is written as

a noisy variant of x, and Φdd = E{ddT} is its correlation

matrix. If we assume that the elements of d are uncorrelated

with variance σ2
M,pri, the estimation can be simplified to

x
post
M = x

pri
M +AT

(

AAT +
σ2
n

σ2
M,pri

I

)−1

(y −Ax
pri
M ).

The calculation of the soft values in the second step is equal

to the one in TSR.

This turbo-based algorithm, combining MMSE estimation

and soft feedback, is denoted by TMS/Q. The pseudocode of

this algorithm is given in Alg. 1, Variant B.

A comparison with the linear estimation in TSR/Q (cf. (4))

shows that TSR/Q can be seen as a simplified version of

TMS/Q, valid for AAT ≈ c̄2I . Note that TMS/Q holds for

all types of measurement matrices, the restriction that A is a

(scaled) part of a unitary matrix, which was assumed in the

original paper on TSR [20] and also for TSR/Q, is not required

anymore.

III. DISCUSSION OF THE EXTRINSICS CALCULATION

The TMS algorithm is based on the turbo principle, which is

well-known in channel coding [27]. The general idea is that

two decoders (A and B in general, LMMSE estimator and

soft value calculation here) exist, which alternately decode or

estimate the signal and which exchange information about the

current results. Each decoder takes into account the informa-

tion from the other decoder (the so-called priors, i.e., x
pri
M &

x
pri
S ) and calculates a new estimate, the so-called posteriors

(x
post
M and x

post
S ). In order not to hand back the information to

the other decoder which has been received from it, this prior

information has to be removed from the estimate (resulting in

the so-called extrinsics, i.e., xext
M & xext

S ) before passing it to

the other decoder. The extrinsic values are calculated by (cf.

Line 7 & 11, Alg. 1)

x
pri
S = xext

M = σ2
M,ext

(

x
post
M

σ2
M,post

−
x
pri
M

σ2
M,pri

)

, (5)

with corresponding average variances

σ2
S,pri = σ2

M,ext =

(

1

σ2
M,post

−
1

σ2
M,pri

)−1

. (6)

This principle is shown in the upper part of Fig. 1.

In the following, both blocks of the algorithm are analyzed

from a different point of view, leading to interesting insights.

Unbiasing

Unbiasing

est.

x
pri
S = xext

Mx
post
M

x
pri
M = xext

S x
post
S

“−”
“−”LMMSE

est.

LMMSE

calculation

Soft value

Soft value

calculation

xbiased
A = x

post
M xunbiased

A = xext
M

xbiased
B = x

post
S

xunbiased
B = xext

S

y

y
x̂

x̂

Fig. 1: Block diagram of TMS, interpreted from a turbo

perspective (upper part), and interpreted from a signal theory

perspective (lower part).

A. First Part

If discrete-valued signals are to be recovered, it is important

that the diagonal elements of the end-to-end cascade for the

estimation of x are equal to 1, otherwise a bias is present. In

the MMSE case, the cascade is given by

K = [Ki,j ] = AT

(

AAT +
σ2
n

σ2
M,pri

I

)−1

A , (7)

with diagonal elements smaller than one. In order to compen-

sate for the bias, the estimates have to be scaled by the inverse

of the diagonal elements of K . Given the biased estimate x
pri
M ,

the ith unbiased element xU,i is estimated by

xU,i = xpri
M,i +

1

Ki,i

· (xpost
M,i − xpri

M,i)

=
1

Ki,i

· xpost
M,i −

(

1

Ki,i

− 1

)

· xpri
M,i . (8)

With the prior error variance σ2
M,pri, the biased a-posteriori

error variance of the ith element is given by [26]

σ2
M,post,i = σ2

M,pri − σ2
M,pri ·



AT

(

AAT +
σ2
n

σ2
M,pri

)−1

A





(ii)

= σ2
M,pri · (1 −Ki,i) , (9)

and the unbiased error variance σ2
U,i calculates to [23]

σ2
U,i = σ2

M,pri ·

(

1

Ki,i

− 1

)

. (10)

Combining (8)–(10), it follows

xU,i = σ2
U,i ·

(

xpost
M,i

σ2
M,post,i

−
xpri
M,i

σ2
M,pri

)

(11)

= xext
M,i (12)

σ2
U,i = σ2

M,ext,i , (13)

which is equal to the calculation of the extrinsic values (cf.

Line 7, Alg. 1). Hence, the extrinsic calculation corresponds

to unbiasing of the estimate, and thus, when using unbiased

MMSE estimates, (inherently) extrinsic information is consid-

ered.
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The unbiasing operation can also be interpreted from a third

point of view. Given an observation o, the probability density

function (pdf) of the biased a-posteriori estimate is given by

fX(x|o) ∼ N (xpost
M,i , σ

2
M,post) , (14)

which corresponds to the backward channel model, cf. Fig. 2,

upper part. Note that in this model, as in any MMSE solution,

the error is uncorrelated to the observation o. After the

bias compensation, however, the error is uncorrelated to the

unbiased estimate [28], which leads to the forward channel

model which is shown in the lower part of Fig. 2. In this

case, the density of interest is fO(o|x). With Bayes’ theorem

it holds

fO(o|x) = fO(o)
fX(x|o)

fX(x)
, (15)

where fO(o) can be considered as a constant for a given o. If

all variables are Gaussian distributed, it follows

fO(o|x) ∼
N (xpost

M,i , σ
2
M,post)

N (xpri
M,i, σ

2
M,pri)

, (16)

with the expected value and variance [29]

xext
M,i = E{o|xpri

M,i} = σ2
M,ext ·

(

x
post

M,i

σ2
M,post

−
x
pri

M,i

σ2
M,pri

)

(17)

σ2
M,ext = Var{o|xpri

M,i} =
(

1
σ2
M,post

− 1
σ2
M,pri

)−1

, (18)

which are again the equations used for the extrinsic calculation

in TMS. Thus, the biased MMSE estimate is equal to the a-

posteriori value, which corresponds to the backward channel

model. The unbiased MMSE estimate is equal to the extrinsic

value, and thus the forward channel model.

MMSE est.
unbiased

0, σ2
M,ext

MMSE est.
biased

parameters

parameters

unbiased error

x
post
A

o

x
post
A , σ2

M,post

o

x
ext
A

E{o}, σ2
o

fO(o|x)

fX(x|o)

0, σ2
M,post

biased error

Fig. 2: Channel models in the estimation process.

B. Second Part

In the second part of TMS, soft values are calculated. Since

the estimator is non-linear, the calculation of the bias is not

as obvious as for the first step. However, every non-linear

memoryless device can be written as a linear scaling plus an

additive estimation error which is uncorrelated to the linear

part [30]. In general, any prior estimate z of the transmitted

value x (with z = xpri
S,i in our case) can be written as noisy

variant of x, i.e., z = x+ e, where we assume the error to be

Gaussian e ∼ N (0, σ2
e), with σ2

e = σ2
S,pri, and independent

from x. The soft value of z can be written as a function

xpost
S,i = g(z) = E{xi|z}, z = xpri

S,i, which in turn is linearized

as [30]

z − g(z) = kEe+ nE , (19)

TABLE I: Comparison of the steps.

First step Second step

Processing vectorwise (joint) symbolwise (individual)

Assumption x Gaussian distributed sparsity s, x ∈ C0
Estimation linear/affine non-linear

Estimated variable signal x error e

where the scaling factor

kE = EZE{(z−g(z)) e}
σ2
e

(20)

is chosen such that the error nE has minimum variance. Note

that, in contrast to the first step where we estimate the signal x,

the error e is estimated, with which in turn x can be calculated.

The estimated error after the soft feedback is given by x+e−
g(x+ e), and hence

kE =
EXE{(x+ e− g(x+ e)) e}

σ2
e

(21)

=
σ2
e − E{g(x+ e) e}

σ2
e

. (22)

It can be shown via integration by parts that for any distri-

bution of x, E{g(x + e) e} = E{g(xpri
S,i) e} = σ2

S,post =

E{x2
i |x

pri
S,i} − (E{xi|x

pri
S,i})

2 holds if the error is Gaussian

distributed.2 Hence, taking σ2
e = σ2

S,pri into account, kE =
σ2
S,pri−σ2

S,post

σ2
S,pri

, and with the resulting unbiasing factor 1/kE ,

the unbiased estimate calculates to xext
S,i = z− 1

kE
·(z−g(z)) =

xpri
S,i−

σ2
S,pri

σ2
S,pri

−σ2
S,post

·(xpri
S,i−xpost

S,i ) and σ2
S,ext = E{(x−xext

S )2},

which, after straightforward modifications, result in the same

unbiasing formulas as in the first step. Hence, as in the first

step, the extrinsic calculation in TMS is equal to unbiasing,

i.e., the change from the backward channel model to the

forward one. The block diagram of TMS, interpreted from

this unbiasing perspective, is given in the lower part of Fig. 1.

A comparison of both steps is given in Table I. While

the first step performs a vectorwise linear estimation of x

(implicitly assuming that x is Gaussian distributed), a non-

linear symbolwise estimator for the error e is applied in

the second step, thereby taking into account the sparsity and

alphabet constraint.

IV. SIMULATION RESULTS

In this section, numerical results of the new algorithm are

shown and compared to the ones of established algorithms.

Two different channel matrices are used. First, A is con-

structed as random part of a random orthogonal matrix.

Second, A is a random Gaussian matrix. In both cases,

the columns are normalized to unit length, and L = 258,

K = 129, s = 20, C0 = {−1, 0,+1}. To ensure convergence,

all algorithms perform 50 iterations. The measure of interest

when dealing with discrete values is the symbol error rate

SER = 1
L

∑L

i=1 Pr{x̂i 6= xi}. The results are shown in Fig. 3.

In the SVD-based case (upper figure), the new algorithm

(yellow, dashed) performs as good as IMS/Q (red) [23]. TSR/Q

(yellow, solid) is outperformed by 0.5 dB, and the well-known

BAMP/Q by 0.2 dB. For comparison, the results for IHT/Q

2For a detailed derivation, please see [31].
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E
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10 log10(1/σ
2
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Fig. 3: SER over the noise level 1/σ2
n in dB. L = 258,

K = 129, s = 20, C = {−1,+1}. SVD-based matrix (top),

Gaussian matrix (bottom). ‖A(:,i)‖
2 = 1 ∀ i.

(blue) and ISFT/Q (green) are shown.

For Gaussian sensing matrices, the new algorithm TMS/Q

shows the best performance. Note that TSR/Q fails since

the assumption that A is a part of an orthogonal matrix

is not fulfilled. In general, the Gaussian matrices are less

structured than the SVD-based, and only a smaller sparsity

is tolerated to obtain the same performance. Note that the

influence of the matrix is much larger for algorithms in which

the matched filter is applied (IHT/Q, ISFT/Q) than for MMSE-

estimation-based algorithms (TMS/Q, IMS/Q). However, also

the aforementioned algorithms are able to find the correct

result if the sparsity is small enough.

V. CONCLUSION

In this paper, we have shown that the calculation of extrinsic

information is equal to unbiasing, justifying the calculation

performed in the second step of TSR and TMS. In addition,

the TSR algorithm has been improved by the application of

the LMMSE estimation, which leads to better numerical results

than the established algorithms.

Note that an analysis of the complexity of the algorithms is

beyond the scope of this paper. However, first results can be

found in [32].
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