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Abstract—There is a common observation that audio event
classification is easier to deal with than detection. So far, this
observation has been accepted as a fact and we lack of a
careful analysis. In this paper, we reason the rationale behind
this fact and, more importantly, leverage them to benefit the
audio event detection task. We present an improved detection
pipeline in which a verification step is appended to augment
a detection system. This step employs a high-quality event
classifier to postprocess the benign event hypotheses outputted
by the detection system and reject false alarms. To demonstrate
the effectiveness of the proposed pipeline, we implement and
pair up different event detectors based on the most common
detection schemes and various event classifiers, ranging from
the standard bag-of-words model to the state-of-the-art bank-
of-regressors one. Experimental results on the ITC-Irst dataset
show significant improvements to detection performance. More
importantly, these improvements are consistent for all detector-
classifier combinations.

I. INTRODUCTION

Audio event classification and detection (AEC/D) have been
an active field of research in recent years [1], [2], [3]. So far,
beside a majority of works focusing on the improving overall
performance in terms of accuracy [2], [1], [4], [5], many other
aspects have also been studied, including noise robustness [6],
[7], [8], overlapping event handling [9], [10], [11], [12], early
event detection [13], multi-channel fusion [14], as well as
generic representation [15]. However, little attention has been
paid to the important aspect of event detection systems on
continuous streams: false positive reduction. False positives,
i.e., event instances that are spuriously detected by a detection
system, and subsequently draw attention to them, are arguably
one of the most important problems faced by different ap-
plications like ambient intelligence and surveillance. To the
best knowledge of the authors, this is the first work explicitly
addressing this problem.

Previous research on audio event detection can be roughly
grouped into three different schemes. The first one is the
detection-by-classification where event classification models,
for example Support Vector Machines (SVMs), are learned and
then applied on test audio signals in a sliding-window fashion
[16], [17], [5]. The second scheme relies on automatic speech
recognition (ASR) frameworks where the states of frame-wise
features are modeled by Gaussian Mixture Models (GMMs)
followed by Hidden Markov Models (HMMs) to model the

distributions of the feature sequences given the state sequences
[18], [19], [20]. On testing, the target event is recognized
by maximizing the posterior probability on a local feature
vector sequence of a test audio signal. The third scheme is
based on the recently proposed regression approach [4], [13].
A regressor based on random regression forests is learned for
each target event category to model the relative positions of the
audio segments with respect to the event onsets and offsets. On
testing, the learned regressor is used to estimate the positions
of the event onsets and offsets (i.e. their boundaries) in a test
audio signal.

The goal of false positive reduction is obviously achiev-
able by improving the overall performance towards an oracle
system which makes no mistakes. This has inherently been
the main focus of many works since the task was introduced.
Nevertheless, our purpose is different from them in essence.
We aim to reduce the false positives of detection systems
given the state-of-the-art performance which is far from perfect
in practice. Our proposed detection pipeline is inspired by
investigating the performance gap between a detection system
on continuous streams and a classification system on isolated
events. More specifically, the classification task is much easier
to deal with and usually enjoys higher overall accuracy than
that of the event detection task. Based on this observation,
instead of making hard detection decisions early on, it is
reasonable to inject a verification step at the end of the
detection pipeline, where a trained classifier is used to classify
the detected hypotheses and reject those with mismatched
labels. Unlike the common detection-by-classification scheme
[16], [17], [1], this can be considered as a novel scheme to
utilize a trained event classifier for the detection task.

II. THE IMPROVED DETECTION PIPELINE FOR FALSE
POSITIVE REDUCTION

A. Why is audio event detection harder than classification?

There is a fact that the classification task is much easier than
the detection one. For example, on the ITC-Irst dataset [2] used
in this work accuracies of 98.9% and 93.1% are obtainable for
the classification and detection tasks, respectively (cf. Section
IV). This observation is also well-known in the CLEAR 2006
challenge [2]. This can be explained by the fundamental
difference between the tasks. The reason is two-fold. First and
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more obviously, the detection task needs to discriminate not
only the event categories of interest (as in the classification
task) but also the target event categories from highly rich
background sounds. Second, for the classification task, we
have access to the global context of the events while, in the
detection task, we do not know in advance boundaries of
the events and usually need to rely on unreliable local audio
features for inference.

Furthermore, this fundamental dissimilarity results in a
drawback of event detectors which are based on the com-
mon detection-by-classification scheme, such as those in [17].
These detectors attempted to build strong event classification
models and subsequently employ them to detect events in
continuous streams with a sliding window. Since the classifiers
are trained on complete events, they expect to be presented
with complete events to guarantee a good performance. How-
ever, due to high intra- and extra-class temporal variations of
audio events, it is almost impossible to decide a good-for-
all window length that exactly captures complete events. This
results in mismatch between training and testing data, which
significantly deteriorates the accuracy of the classification
models and subsequently the accuracy of detection systems.
Although one can circumvent this issue by training classifiers
on equal-sized segments of the events, such as those in [5],
[16], the problem remains unsolved. By dividing the events
into equal-sized segments, one has increased the complexity
of the data distribution. This makes the classification problem
harder to solve than the original one considering the entire
events as training examples. All of this, again, results in the
degeneration of the classification models.

B. The improved detection pipeline with a verification step

In order to mitigate the above-discussed shortcoming and
take full advantage of high-quality classification models for
the detection task, we propose to employ them in a completely
different manner. The idea is that we augment a detection
system with a verification step where a high-quality classi-
fication model will be applied to verify the detected event
hypotheses as in Fig. 1. At this step, an event hypothesis
with a class label cdetected outputted by the detection system
will be rejected when it is classified with a mismatched
label cclassified 6= cdetected by the classifier. Eventually,
instead of making hard decisions early on, the false positive
hypotheses outputted by a detection system will be rejected
by the verification step. As a result, the detection precision
will be enhanced, leading to improvements in overall detection
performance.

The rationale behind the proposed pipeline originates from
the difference between the classification and detection tasks
as discussed above. Since the detection task relies on local
features, the wrongly detected events are usually difficult
ones whose local features are not reliable and cause wrong
detections. However, after the detection step, we obtain the
estimated boundary of the detected events and therefore, have
access to their more or less global contexts. As a result, the
mismatch between training and testing data is mitigated and
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Fig. 1. The improved audio event detection pipeline with the verification step
for false positive reduction.

an event classifier is expected to perform well. It should be
also noted that we achieve the goal of false positive reduction
by checking the consistency between the detection labels and
the classification ones. Our approach, therefore, differs from
that in [21] which relied on cascading classifiers.

III. THE EMPLOYED EVENT DETECTORS AND CLASSIFIERS

In order to verify the effectiveness of the proposed detection
pipeline, we implement three event detection systems and five
different event classifiers and study all possible combinations
of them in the proposed pipeline. These detectors are typi-
cal ones complying with three common detection schemes:
detection-by-classification, ASR-based, and regression. The
employed classifiers are chosen to be diverse enough, ranging
from the standard bag-of-words model to the one recently
reported state-of-the-art performance.

A. Audio event detectors

Detection-by-classification. This system conforms to the
common detection-by-classification scheme. It uses a sliding
window of one second and a shift of 100 ms on audio
signals for detection. The detection task is accomplished by
two RBF-kernel SVM classifiers: one for event/background
classification and the other for subsequent event classification.
For representation, each one-second segment is decomposed
into 25 ms frames with an overlap of 50%. A set of 60
features as used in [16] is then extracted for a frame: 16
log-frequency filter bank coefficients, their first and second
derivatives , zero-crossing rate, short time energy, four subband
energies, spectral flux calculated for each subband, spectral
centroid, and spectral bandwidth. In turn, a global feature
vector which consists of mean and standard deviation of frame-
wise feature vectors is used to represent each one-second
segment. Furthermore, a median filter of size 17 is applied
on the label sequences to eliminate too short silences or non-
silences [16]. Finally, an event hypothesis is excluded if its
length is less than the minimum length of training instances.

ASR-based. This system adheres to the ASR framework.
The audio signals are divided into short 20 ms audio frames
with a hop size of 10 ms as commonly used for speech.
Each frame is represented by twelve Mel-Frequency Cepstral
Coefficients (MFCCs). Each event is described by a three-
state HMM. All of the HMMs have a left-to-right topology
and use output probability densities represented by means of
128 Gaussian components with diagonal covariance matrices.
HMM training was accomplished through the Baum-Welch
training procedure. Finally, the optimum event sequence is
obtained by the Viterbi decoding algorithm.
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Fig. 2. The audio event detection system based on the regression approach.

Regression. This system follows the regression approach
which was recently proposed for event detection and demon-
strates state-of-the-art results [4], [13]. We show the system
pipeline in Fig. 2 to ease the explanation not only for this
detector itself but also the event classifiers (i.e. BoR and
HoDW in Section III-B) which are derived from this pipeline.
The audio signals are decomposed into 100 ms long segments
with an overlap of 90 ms. We utilize the feature set used in the
detection-by-classification scheme to represent each segment.
Out of C event categories of interest, we trained a regression
forest Fc for each category c ∈ {1, . . . , C}. The binary
segment-wise classifier Mbg is used for event/background
classification. The event segments are subsequently classi-
fied by the multi-class event classifier Mev . The segments
classified as class c will then be presented to regression
forests Fc for event onset and offset estimation. In addition,
the estimation is weighted by the classification probabilities
obtained from Mev . Class-wise detection thresholds searched
by cross-validation are eventually applied to the estimation
scores to determine event onset and offset positions. BothMbg

and Mev were trained using random forest classification [22]
with 200 trees each. The regression forests were trained with
the random forest regression algorithm as in [4], [13].

B. Audio event classifiers

We implemented the following event classifiers to play the
role of the verifier in the proposed detection pipeline.

Bag-of-words (BoW). BoW models have been widely used
for audio event classification [23], [17]. Using this model,
an audio event is represented by a histogram of codebook
entries. The isolated events were divided into 50 ms long
segments each of which is represented by the feature set
used in the detection-by-classification detector. We used k-
means for codebook learning. The entries were obtained as
the cluster centroids, and codebook matching was based on
Euclidean distance. We varied the codebook size in the set
of {50, 100, . . . , 250}. The system with the best performance
was kept.

Pyramid bag-of-words (PBoW). As an improvement of the
BoW models, we extracted and combined BoW descriptors on
different pyramid levels [24] to encode the temporal structure
of the audio events as in [17]. We exploited {2, 3, 4} pyramid
levels and the best one was retained.

Bank-of-regressors (BoR). This system utilizes the class-
specific regression forests Fc in the regression-based detector
in Fig. 2 and stacks them into a bank for feature extraction
as in [25]. An audio event is then transformed into a compact
descriptor φ = [φ1, . . . , φC ]

T ∈ RC+ where φc is the mean
of maximum onset and offset estimation scores outputted by
the regressor Fc. Each entry φc was normalized to φc

maxφc
,

where maxφc is the maximum value of φc in the training
events. This descriptor is compact since its dimensionality is
equal to the number of target event categories. Intuitively, the
descriptor measures how the audio event aligns to the temporal
configurations of different event categories modeled by the
regressors.

Histogram of discriminative words (HoDW). This classi-
fier also utilizes a component of the regression-based detector,
the event classifier Mev , in Fig. 2 for feature extraction. An
event consisting of N audio segments (xn;n = 1, . . . , N) is
represented by the descriptor ϕ = [ϕ1, . . . , ϕC ]

T ∈ RC+ where:

ϕc =
N∑
n=1

1

N
P (c | xn,Mev). (1)

In (1), P (c | xn,Mev) is the probability that the segment xn is
classified as class c by the classifier Mev . These features can
be thought of being a discriminative and compact variant of the
BoW models where Mev plays the role of the discriminative
codebook matcher. In addition, opposed to the BoR descriptor,
this one is unstructured and expected to be good for weakly
structured events.

BoR+HoDW. Since BoR and HoDW are expected to be
good for event types which expose strong and weak temporal
structures, respectively, it is reasonable to combine both types
of descriptors to take advantage of their strengths. In addition,
this is convenient since they are derived from the same pipeline
in Fig. 2. We combine two descriptors using an extended
Gaussian kernel [26]:

K(ei, ej) = exp

− ∑
k∈{φ,ϕ}

1

Ak
D(eki , e

k
j )

 . (2)

where D(eki , e
k
j ) is the χ2 distance between the audio events

ei and ej with respect to the k-th feature channel. Ak is the
mean value of the χ2 distances between the training samples
for the k-th channel.
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TABLE I
OVERALL CLASSIFICATION ACCURACIES (%) OBTAINED BY DIFFERENT

CLASSIFICATION SYSTEMS.

BoW PBoW HoDW BoR BoR+HoDW
97.3 96.6 97.8 98.4 98.9

All final classifiers were trained using one-vs-one SVMs and
the hyperparameters were tuned via 10-fold cross-validation.
The χ2 kernel was used for the BoW, PBoW, BoR, and HoDW
classifiers whereas the kernel defined in (2) was used for the
BoR+HoDW one.

IV. EXPERIMENTS

A. Experiment setup

1) Dataset: We conducted experiments on the ITC-Irst
dataset [2]. It consists of twelve recording sessions with a
total duration of 1.7 hours. There are 16 semantic event
categories with approximately 50 events recorded for most of
the categories. To be consent with the CLEAR 2006 challenge
[2] and previous works [4], [13], we target twelve classes
for evaluation: door knock (kn), door slam (ds), steps (st),
chair moving (cm), spoon cup jingle (cl), paper wrapping
(pw), key jingle (kj), keyboard typing (kt), phone ring (pr),
applause (ap), cough (co), laugh (la). The rest are considered
as background. We used nine recording sessions for training
and three remaining sessions for testing. Only one channel
named TABLE 1 was used.

2) Evaluation metrics: We evaluate the performance of the
detection systems using F1-score metric. For completeness, we
also report the performance of the employed event classifiers
in terms of overall classification accuracy. Note that due to the
randomness of the system in Fig. 2, the experiments related
to the BoR, HoDW, and BoR+HoDW classifiers as well as
the regression-based detector were repeated five times and the
average performance is reported.

3) Experimental results: The classification performances
achieved by different systems are summarized in Table I. Both
the BoW and PBoW classifiers yield best performance with
a codebook size of 200. A pyramid level of 2 is optimal for
the PBoW classifier. Between the BoW and HoDW classifiers
which do not take into account the temporal structure of the
events, the latter one saw an absolute improvement of 0.5% in
classification accuracy, thanks to the discriminative codebook.
Likewise for the classifiers using structural features, BoR
outperforms PBoW by 1.8% absolute. This result explains that
the BoR descriptor appears to model the temporal information
of the events more efficiently than the PBoW one. Finally,
as expected, integration of both structural and unstructural
descriptors, i.e. BoR and HoDW, in the BoR+HoDW system
boosts the classification accuracy by 0.5% absolute compared
to that of the BoR classifier.

The overall detection results of the employed detection
systems, both with and without verification, are shown in
Table II. Without verification, the regression-based detection

system obtains 93.1% in terms of F1-score which significantly
outperforms the detection-by-classification and ASR-based
detectors by 9.4% and 8.7% absolute, respectively.

The detection results with verification demonstrate the ef-
fectiveness of the proposed detection pipeline. Overall, the
verification with all classifiers leads to improvements in overall
detection performance for all detection systems. The average
F1-score gains of 6.7%, 1.7%, and 0.9% are seen for detection-
by-classification, ASR-based, and regression detection sys-
tems, respectively.The principle is that the verifiers reject the
false positives, increasing the precision at the cost of decreas-
ing the recall. The reduction in recall is due to accidental
rejection of true positive hypotheses by the classifiers. This
side effect is explainable since the classifiers are not perfect
and the segmentation errors of the detected hypotheses cause
a certain degree of mismatch between training and test data.
However, the recall drops are sustainably smaller than the
precision gains, which leads to overall improvements in F1-
score. In addition, the gains are varied depending on detector-
classifier combination. For the detection-by-classification and
ASR-based detectors, the F1-score gains achieved by verifi-
cation with all five classifiers are almost the same, i.e. the
standard BoW model is as good as the best BoR+HoDW
one in this sense. However, for the regression-based detector,
the gains obtained by verification with the BoW and PBoW
classifiers are subtle (0.0% and 0.3%, respectively) while those
with the HoDW, BoR, and BoR+HoDW classifiers are more
significant (1.2%, 1.5%, and 1.4%, respectively). Furthermore,
these classifiers offer a unique advantage that using them
for verification purposes is much more convenient than the
other two since they utilize the existing components of the
regression-based detector for feature extraction.

The experimental results also help to reveal the behavior
of different detection systems. The detection-by-classification
system retains a lot of false positive hypotheses which are
explained by its high recall (87.7%) but low precision (80.1%).
In contrast, the ASR-based system is much more conservative,
maintaining relatively small number of hypotheses explaining
its high precision (87.4%) but low recall (81.5%). Conse-
quently, the verification step is able to reject a lot more false
positive hypotheses of the detection-by-classification detector
to boost the precision significantly (13.8% on average over
all five classifiers) whereas the precision gain of the ASR-
based system is more subtle (6.0% on average over all
five classifiers). Regarding the regression-based detector, even
though it obtains much higher precision and recall (i.e. the
retained hypotheses are of higher fidelity) than those of other
two detectors, the verification step can further help to reject
false alarms and yield significant gain in the precision, for
example 3.7% with the BoR classifier.

V. CONCLUSIONS

In summary, we studied what make audio event detection
harder than classification. We then leverage this observation
to study an important aspect of audio event detection systems
on continuous streams, namely false positive reduction. An
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TABLE II
OVERALL DETECTION RESULTS OF DIFFERENT DETECTION SYSTEMS WITH AND WITHOUT VERIFICATION. FOR THOSE WITH VERIFICATION, THE

ABSOLUTE PERFORMANCE GAINS AND LOSSES COMPARED TO THOSE WITHOUT VERIFICATION ARE HIGHLIGHTED IN BLUE AND RED, RESPECTIVELY.

Detection-by-classification ASR-based Regression
F1-score precision recall F1-score precision recall F1-score precision recall

w/o verification 83.7 80.1 87.7 84.4 87.4 81.5 93.1 93.6 92.7

BoW 90.5
↑ 6.8

93.6
↑ 13.5

87.7
↓ 0.0

86.2
↑ 1.8

94.3
↑ 6.9

79.5
↓ 2.0

93.0
↑ 0.0

96.4
↑ 2.8

89.9
↓ 2.8

w
/

ve
ri

fic
at

io
n PBoW 90.2

↑ 6.5
93.0
↑ 12.9

87.7
↓ 0.0

86.1
↑ 1.7

95.0
↑ 7.6

78.8
↓ 2.7

93.4
↑ 0.3

96.4
↑ 2.8

90.7
↓ 2.0

HoDW 90.6
↑ 6.9

93.8
↑ 13.7

87.7
↓ 0.0

86.1
↑ 1.7

91.9
↑ 4.5

81.0
↓ 0.5

94.3
↑ 1.2

96.6
↑ 3.0

92.1
↓ 0.6

BoR 90.5
↑ 6.8

95.2
↑ 15.1

86.3
↓ 1.4

85.7
↑ 1.3

92.9
↑ 5.5

79.5
↓ 2.0

94.6
↑ 1.5

97.3
↑ 3.7

92.1
↓ 0.6

BoR+HoDW 90.4
↑ 6.7

93.8
↑ 13.7

87.3
↓ 0.4

86.2
↑ 1.8

92.8
↑ 5.4

80.4
↓ 1.1

94.5
↑ 1.4

97.0
↑ 3.4

92.1
↓ 0.6

improved detection pipeline is proposed by appending a veri-
fication step to augment a detection system where an event
classifier postprocesses the outputted event hypotheses and
rejects the false positive ones. Three detection systems based
on different detection schemes were implemented and coupled
with various event classifiers which play the role of the verifier.
The detection results with the verification step show consis-
tent improvements on overall detection performance over all
detector-classifier combinations. These results demonstrate the
effectiveness of the proposed detection pipeline.
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