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Abstract—This paper evaluates the application of three meth-
ods for Sound Source Separation (SSS) in industrial acoustic
condition monitoring scenarios. To evaluate the impact of SSS,
we use a machine learning approach where a classifier is trained
to detect a specific operating machine. The evaluation procedure
is based on simulated and measured data, comprising three
different machine sounds as targets and 10 interfering signals.
Various intermixing levels of target and interfering signal are
taken into account, using three different signal-to-interference
ratios. Results show that the chosen source separation methods,
originally developed for music analysis, work well for industrial
signals, significantly improving the classification accuracy.

I. INTRODUCTION

Machine condition monitoring is one of the most efficient
strategies for carrying out maintenance in a great variety of
industries [1]–[3]. The main idea behind condition monitoring
is to assess the condition of a machine during operation by
evaluating arbitrary sensor data. The collected sensor data is
subsequently fed into a monitoring system to identify and
classify machine malfunctions, allowing more cost-effective
maintenance and manufacturing.

The focus of this paper is on Acoustic Condition Monitoring
(ACM) which refers to the evaluation of the acoustic signature
of a machine in an industrial production line. Several ACM
scenarios and methods have been proposed [4]–[6]. However,
with recent advances in Machine Learning (ML) techniques,
and its successful use in a number of applications [7], the
combination of ACM with ML methods is becoming more
and more powerful [8]–[10].

In practical applications, however, the presence of interfer-
ing signals can significantly affect the classification accuracy.
To minimize these effects, more focused acoustic analyses can
be used, like for example microphone arrays for improved
directivity. Additionally, more powerful ML methods such as
Deep Neural Networks (DNN) can also minimize the effects
of interferences on the performance of the ACM system [?].
Finally, as is the case of this study, Sound Source Separation
(SSS) methods can be applied to separate the target sound
from the interfering sources in the acoustic signal [11]–[14].

This paper evaluates the separation performance of three
SSS algorithms, and the impact of the separation stage on a
subsequent classification task for ACM applications. In the
analysis, various target and interfering signals are evaluated
using different interference levels and mixing conditions.

II. METHODS FOR SOUND SOURCE SEPARATION

This section briefly describes the three methods for SSS
which are applied in the experiment described later in Sec-
tion III, namely Azimuth Discrimination and Resynthesis
(ADRess) [15], Frequency Domain Source Identification and
Manipulation in Stereo Mix (FDSI) [16], and Kernel Additive
Modeling for Interference Reduction (KAMIR) [17]. Even
though these algorithms were developed within the music
separation community, the fact that they can handle stereo sig-
nals without making strong assumptions about the harmonicity
or continuity of the target source, makes them promising
candidates for industrial condition monitoring applications.
The three algorithms are described in the following.

The first SSS algorithm used is ADRess which works under
the assumption that only an interaural intensity difference
between the right and the left channel exists for a single
source, exploiting this fact for image localization in stereo
recordings. This method uses gain scaling and phase cancel-
lation techniques on the frequency-azimuth plane in order to
perform the separation [15].

The second algorithm FDSI achieves the stereo separation
by defining a similarity measure between the Short-time
Fourier Transformation (STFT) of both input channels. In
order to determine the lateral direction and the panning index
of the sound source, an ambiguity resolving function is applied
in combination with the sinusoidal energy preserving panning
law [16].

The third algorithm is KAMIR which aims at removing
leakage of a given sound source into a microphone destined
to capture other sources. This is a common scenario when
recording ensembles such as a Jazz quartet where the mi-
crophone used to record the saxophone, very often records
information from the piano, the drums or the bass. KAMIR is
based on the Kernel Additive Model (KAM) proposed in [18]
and assumes that each source is predominant in its dedicated
channel. By using an approach based on a generalized Wiener
filter, KAMIR can estimate the sources in an iterative manner
[17].

III. EXPERIMENT

The experiment described in this section evaluates the
separation performance of the three proposed SSS methods
and analyzes the influence of the separation accuracy on the
subsequent classification task. The following sections provide
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Fig. 1. Measurement setup showing the microphone and loudspeaker posi-
tioning as well as the opening angle α.

information on the derivation of the data fundamental for
analysis, the evaluation of the source separation performance
under simulated and realistic conditions, and their influence
on the classification accuracy.

A. Dataset

The experiment is based on simulated and measured data,
comprising stereo files which contain target and interference
signals with different interchannel mixing levels.

In the simulations, both signals are mixed in each stereo
channel using various mixing degrees. In the best-case sit-
uation both signals are completely separated to the left and
right channel and optimal separation is possible. In the worst-
case scenario, where the sources are separated by only 20o

of panning, both separation and classification are much more
challenging tasks.

For more realistic measurements, the same conditions as
the ones used in the simulations are recreated using two
loudspeakers for playback and two cardioid microphones for
recording. The interfering signal is played back on the right
loudspeaker while the target signal is presented on the left. The
opening angle α between the loudspeakers is then iteratively
decreased in 10o steps by moving both loudspeakers, hence,
increasing the crosstalk between the microphones. See Fig. 1
for a depiction of the measurement setup. The recordings were
conducted in the Class A anechoic chamber at Fraunhofer
IDMT, using a microphone stereo setup (A/B technique). The
microphones were facing opposite of each other with the left
microphone pointing to the left, and the right microphone
pointing to the right. The positions of the microphones were
not changed during the measurements. The corresponding
loudspeaker-microphone distance was 150 cm and both micro-
phones were set up at a distance of 30 cm. TABLE I gives an
overview of the 17 test conditions evaluated in the experiment.
In addition to the 17 conditions representing various opening
angles, all conditions were also evaluated for three Signal-
Interference-Ratios (SIR): In the first, the target is 5 dB louder

TABLE I
OVERVIEW OF TEST CONDITIONS REPRESENTING THE INTERCHANNEL

MIXING LEVEL AS OPENING ANGLE α BETWEEN TARGET AND
INTERFERER SIGNAL.

Conditions Opening angle α

C1 180o
C2 170o
C3 160o
C4 150o
C5 140o
C6 130o
C7 120o
C8 110o
C9 100o
C10 90o
C11 80o
C12 70o
C13 60o
C14 50o
C15 40o
C16 30o
C17 20o

than the interfering signal (+5 dB SIR), in the second both
signals have equal levels (0 dB SIR), and in the third, the
interference is louder than the target (−5 dB SIR). A total of
three target machines (TM) and ten interfering noises served
as test material. The target machines included three different
types of DC engines which are referred to as TM1, TM2,
and TM3 in the following descriptions. The interfering signals
included machine noises such as fans, drills, and washing
machines as well as environmental sounds, human noises, and
white noise.

B. Sound Source Separation

The SSS methods described in Section III were applied
on both the simulation and measurement data in the attempt
to remove the interfering sounds from the target sources. As
a mathematical measure of degree of separation, the Signal-
to-Distortion Ratio (SDR) was used [19]. It is important to
note that the focus of these experiments was on improving
classification accuracy of machine sounds. The improvement
of the perceptual separation quality is not a goal in itself. Thus,
the choice of SDR as a quality measure remains valid.

1) Simulations: The following analysis evaluates the source
separation performance for the simulated data over all condi-
tions, i.e., opening angles, for the three SSS algorithms and
the three SIRs. The separation results are plotted in Fig. 2,
showing the SDRs as boxplots over all panning angles with
the boxes comprising all target-noise combinations. The rows
represent the different algorithms, with ADRess shown in the
top, FDSI in the middle, and KAMIR in the bottom row,
whereas the different SIRs are given in the column plots.

As expected, results show that for all algorithms and all
SIRs, the separation performance decreases with decreasing
opening angle, i.e., with increasing interchannel mixing levels.
Overall, it can be seen that ADRess provides the highest
separation performance while FDSI and KAMIR yield slightly
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Fig. 2. Separation performance shown as boxplots for all simulated signals over all conditions, with rows representing the three SSS methods and columns
the corresponding SIRs. Note that distributional outliers, i.e., data lying outside the 99.3 % distribution, are omitted in the plots for readability.

lower SDR values. As can be seen in the top row of Fig.
2, the separation performance of ADRess shows decreasing
SDRs up to Condition C12 or C13, even reaching negative
values. After C13, SDR values slightly rise again. Also note
that the width of the boxes decreases with decreasing opening
angle, indicating less variances across all target and interfering
signals. Although the overall behavior is similar for all SIRs,
it can be seen that the separation performance is better when
the amplitude of the interference is lower than that of the
target, it is slightly lower if they have similar levels, and
even lower if the interfering signal is louder than the target.
The second algorithm FDSI shows a different behavior. Over
all SIRs, separation performance drops in a nearly linear
fashion, with SDRs below zero for conditions C12 and higher.
Like for ADRess, the variances between target and interfering
signals decrease for decreasing opening angles. The third
algorithm KAMIR shows a similar behavior to FDSI for
SIRs 0 dB and +5 dB, although SDR values below zero are
only observable for conditions C16 and C17. For −5 dB
SIR, the variances across all target-interferer combinations
increase for decreasing opening angles, but the median of the
distribution shows the expected tendency of decreasing SDR.
It has to be noted that, as the opening angles decrease and
the crosstalk between microphones increases, the assumption
made in KAMIR only weakly holds, i.e., that the target
source is predominant in its dedicated channel. This might
explain the increased variance observed for −5 dB SIR. The

simulation results suggest that the ADRess algorithm is the
most suitable method for the separation scenario described,
followed by FDSI and KAMIR. However, comparing the SDR
scale between the three methods, ADRess also provides a
wider separation range, indicating higher sensitivity to opening
angles and mixing levels.

In the following, the same experiment is conducted for the
measured data to evaluate the separation performance under
more realistic conditions.

2) Measurements: The separation results for the measured
data are shown in Fig. 3. In general, results show a similar
trend as in the simulations but with clearly higher variances,
i.e., larger box widths. Also, the separation performance is
higher if the target signal is less masked by the interference,
whereas for higher SIRs, separation accuracy drops for all
methods. Also, as expected for realistic conditions, the overall
performance in terms of SDR is lower compared to the simu-
lations. Like in the simulations, the performance for ADRess
drops for decreasing opening angles, also providing SDR
values below zero. However, in contrast to the simulations,
the first six conditions are mostly on the same level and show
no significant differences. This might be due to the crosstalk
between the channels which cannot be avoided in practical
applications. The results for FDSI are in accordance to the
simulation results with a more or less linear SDR decrement
for decreasing opening angles. The separation performance
of KAMIR exhibits the lowest SDR values, but with less
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Fig. 3. Separation performance shown as notched boxplots for all recorded signals over all conditions, with rows representing the three SSS methods and
columns the corresponding SIRs. Note that distributional outliers, i.e., data lying outside the 99.3 % distribution, are omitted in the plots for readability.

sensitivity to changes in the opening angle.
Overall, results indicate that the ADRess method is best

suitable for target-interferer-separation, followed by FDSI
and KAMIR. As expected, their separation performances are
improved for higher SIRs. Note that, due to the frequency-
dependent directivity of the microphones and loudspeakers, the
intermixing levels between the target and interfering signals do
not exactly replicate the situation of the simulations. However,
as shown in the plots, results are still comparable.

C. Classification

This section presents results from a classification task
designed to evaluate the impact of SSS in the classification
accuracy of a method trained to detect a specific running
engine (TM3) within an industrial environment.

a) Model training: A Support Vector Machine (SVM)
binary classifier was trained to recognize the running engine of
TM3 against other environmental and industrial sounds. A new
training dataset was recorded with 20 hours of audio material
(10hrs running engine/10hrs other industrial noises) including
clean signals of the target machine as well as mixed signals
of the target machine with six types of interfering noises such
as a fan engine, washing machine, speech, laughter, radio,
or people walking around, mixed at different SIRs (+5 dB,
0 dB and −5 dB). To improve the classifier robustness against
microphone characteristics, 20 different microphones were
used in the recordings. The SVM classifier was trained with

spectral features including flatness and spectral centroid, using
an RBF kernel with grid search.

b) Testing: For testing, another dataset of 2 hours of
audio material was recorded (1hr running engine/1hr other
industrial noises), including clean signals of the interfering
sounds and mixtures of two interfering sounds at different
SIRs. Additionally, to discard effects of room acoustics, the
test dataset was recorded in a different room. A classification
accuracy of 96.7% was obtained with this dataset.

To evaluate the impact of SSS techniques on our condition
monitoring scenario, the dataset described in Section III-A was
also used for testing, including the separated sounds obtained
with the three separation algorithms. The signals from TM3
were used as target while the signals from TM1 mixed with
the 10 interfering noises were used as the other condition of
the binary classifier.

c) Results: It can be observed in Fig. 4 that there is a
considerable drop in classification performance when interfer-
ing noises are present (Mix) compared to clean signals. As
in realistic industrial scenarios interfering noises are bound to
happen, and the ability to minimize the effects of interferences
in the classification task is of utmost importance. In general,
an improvement in classification accuracy can be observed
for all algorithms and SIRs when sound separation is applied,
both for the simulations and the measurements. As expected,
classification accuracy is in general slightly higher for the
simulation data than for the measurements. For the mixed data
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Fig. 4. Measurement setup showing the microphone and loudspeaker posi-
tioning as well as the opening angle α.

as well as for the KAMIR algorithm, a clear improvement
in classification accuracy can be observed with higher SIRs.
In contrast, this trend is not clearly observed for ADRess or
FDSI, although they provide higher classification accuracies.

IV. CONCLUSION

This paper addressed the application of SSS methods for
industrial acoustic condition monitoring scenarios. Based on
data derived from simulations and real measurements, the
separation performance of three SSS methods was evaluated,
namely ADRess, FDSI, and KAMIR, by relating the influence
of the separation accuracy on a subsequent classification task
using an SVM. The data comprised stereo files with different
mixes of target and interference signals, including a variety
of signal types at different SIRs in both simulations and
real recordings. Results showed that the three algorithms
can achieve separation between target and interference, with
performance decreasing for increasing mixing level. Results
from the measurement data were in accordance to the sim-
ulations although the overall performance was higher in the
ideal scenarios. The subsequent classifier also performed well,
providing accuracies between 59% and 97% depending on
the mixing level. Results indicate that the ADRess model
performed best under various recording and simulation con-
ditions. As expected, the classification accuracy decreases for
decreasing SIR. Overall, results suggest that—as a proof-of-
concept—SSS methods from music information retrieval may
also be suitable for separating machine sounds. In this case,
classification accuracy was used as a performance measure
to validate the contribution of SSS in industrial monitoring
scenarios. For future work, a more thorough analysis of the
influence of realistic scenarios is proposed, taking different re-
flective environments and the influence of spatially distributed
interfering noises into account.
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