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Abstract—For low-cost sound monitoring of machineries, we
propose a novel audio reconstruction method superior in terms
of accuracy and processing time. A conventional method based
on the Orthogonal Matching Pursuit (OMP) has been proposed
for audio recovery. However, the conventional method has a
low performance for sounds of machineries because, sounds of
machineries tend to be not highly sparse, and the reconstruction
performance of OMP decreases extremely if the signal is not
sufficiently sparse. To solve the problem of the conventional
method, the proposed method is based on the Alternating
Direction Method of Multipliers (ADMM) for Group Lasso
combined with the Gabor dictionary. While OMP’s performance
decreases with the number of nonzero elements, the proposed
method shows a better robustness to variations in sparsity and
outputs a reasonable result in a few tens of iterations. Those
features among others make the algorithm a reliable solution
which offers a better trade-off between accuracy and processing
time compared to the conventional method.

Index Terms—compressive sensing, alternating direction
method of multipliers, sub-Nyquist sampling, coprime sampling,
orthogonal matching pursuit

I. INTRODUCTION

One of the challenging tasks in audio signal processing
is recovering the original sound from incomplete data. In
this paper, we focus on the reconstruction of audio signals
processed through a sub-Nyquist sampling method - random
or coprime sampling - adapted to low-cost sound monitoring,
a technique required for machine maintenance. This procedure
presents some useful features as it allows the user to reduce the
labor and sensing costs - equipment, energy consumption, etc.
- by only taking a precisely known number of measurements
from the original sound. The fewer data we collect, the better
the cost saving is. Because the reconstruction becomes arduous
when the unknown information about the input signal is
significant, we need a method that overcomes this difficulty
while providing an exploitable outcome.

In the audio field, as well as in image and video processing,
compressive sensing [1] has become a promising technique
to achieve the reconstruction of audio signals from partial
information. Compressive sensing solves an undetermined lin-
ear problem where the number of unknown variables exceeds
the number of equations available. Numerous versions of this
method have been proposed in the past few years. Based on
the assumption that the input signal possesses a sparse repre-
sentation, compressive sensing is effective in a specific domain
where this sparsity is found. Examples of such domains

include the fast Fourier Transform (FFT), the Discrete Cosine
Transform (DCT) which is widely used in image processing
[2] and the Gabor dictionary [3]. Since the FFT does not easily
handle the phase shifts involved in compressive sensing [4],
the DCT and Gabor dictionaries are usually preferred [5][6][3].
Adler et al. [3] demonstrated that the Gabor dictionary is better
than DCT for audio reconstruction. Also, what reconstruction
algorithm is fit for audio reconstruction is an important issue.
The conventional state-of-the-art reconstruction algorithm by
Adler et al. [3] is based on OMP [7], which is a popular greedy
algorithm for l0-minimization. However, as mentioned in [8],
under the condition that the signal is not sufficiently sparse,
OMP fails to provide the sparsest solution. On such condition,
the reconstruction performance of OMP decreases extremely.
For instance, medical imaging and wireless communications
provide a very sparse representation, whereas the sounds of
machineries tend to be not highly sparse. Thus, the conven-
tional method [3] is not suitable for the reconstruction of the
sounds of machineries.

To solve the problem of the conventional method [3], we
propose a reconstruction method based on the Alternating
Direction Method of Multipliers (ADMM) with the Gabor
dictionary. The proposed method solves l1-minimization, and
so it does not suffer from the extreme deterioration even in the
case that the signal is not highly sparse. By splitting the l1-
norm problem in two distinct parts, ADMM has the ability to
provide an acceptable solution within a few tens of iterations
[9] that still outperforms OMP’s result for a given mechanical
sound. Moreover, in order to make use of the Gabor dictionary,
which has a good property for audio reconstruction, we apply
the ADMM for Group Lasso algorithm [9] instead of regular
l1-minimization. Well suited for convex optimization, the
algorithm presented in this paper is both flexible and easy to
implement. Through our experimental results, we show that
ADMM offers a better compromise between accuracy and
processing time than OMP in the reconstruction for a signal
that is not highly sparse. Moreover, we offer a precise analysis
supported by a representative experiment of the application,
whose results covering the reasons why ADMM is an efficient
method proposed for this purpose.

II. PROBLEM STATEMENT

In this section, we introduce the concept of compressive
sensing with some notations from [10] that we will use
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throughout this paper.
We define a real-valued, discrete-time audio signal repre-

sented by a column vector x of dimensions N× 1. Based on
the assumption that the signal possesses a sparse representation
when expressed in a specific transform domain, x can be
written as

x =
N∑
i=1

siΨi = Ψs, (1)

where s is the N× 1 column vector whose elements cor-
respond to si = ΨT

i x with .T being the transposition, and
Ψ = [Ψ1|Ψ2|...|ΨN ] is a N × N transform basis matrix
with Ψi as columns. Considering the case when K << N ,
the signal x is K-sparse in the Ψ domain if the (N − K)
entries in s are zero. To reconstruct the signal of interest,
compressive sensing directly acquires m measurements such
that m < N . Thus, we consider a m× 1 measurement column
vector y whose elements are the result of the inner products
between x and (Φj)

m
j=1. Consequently, compressive sensing’s

undetermined linear problem can be expressed as

y = Φx = ΦΨs = Θs, (2)

where Φ, the measurement matrix, and Θ are both m × N
matrices.

The solution to (2) resides in the nature of Θ and depends
on the signal reconstruction algorithm employed. While Ψ is
chosen according to the signal of interest, Φ depends on the
method of acquisition. The measurement matrix is related to
the a priori known elements from the audio signal. In our case,
the audio signal is processed through a sub-Nyquist sampling
method. Therefore, the measurement matrix is defined by a
specific selection for the user. For instance, by setting 5 and
7 as our coprime values, we construct Φ so that it chooses
only the elements of x located in positions corresponding to
all the multiples of 5 and 7. In this paper, the discussion is
focused on the choice of the reconstruction algorithm which
is the most adequate to retrieve sparse signals resulting from
such sampling methods. Our study on the sampling methods
is reported in another paper [11].

III. CONVENTIONAL METHOD

As mentioned previously, Audio Inpainting [3] proposes the
Orthogonal Matching Pursuit (OMP) as a solution to retrieve
the original signal from few measurements. With the transform
domain Ψ defined as the Gabor dictionary, the version of OMP
found in [3] presents the following features: (a) as a heuristic
algorithm, OMP answers to the l0-norm problem expressed as

ŝ = argmin||s||0 such that Θs = y, (3)

(b) since s is a sparse vector, every iteration, OMP selects the
columns of Θ that correlate the most with the residual, set to
y in the initialization step. Eventually, the algorithm produces
a set of K columns that correspond to the location of the
elements in the sparse signal, (c) Adler et al. ’s version is
particularly adapted to the Gabor dictionary. The latter allows
the algorithm to select pairs of columns per iteration that are,

in our case, pairs of cosine and sine at the same frequency
with a zero phase, and (d) the algorithm stops as soon as
the residual energy becomes less than the threshold set by the
user or when the number of iterations k reaches KOMP , value
linked to the maximum number of nonzero elements.

Although popular in compressive sensing, OMP loses its
attractive performance when faced with a signal that is not
highly sparse, which is similar to those found by low-cost
sound monitoring methods. In this context, the nonzero ele-
ments are clustered making them difficult to locate. Using a
greedy approach, OMP is more likely to show errors consid-
ering that the algorithm does not correct its approximation of
the sparse solution at each iteration. While research has been
conducted in order to determine the exact number of nonzero
elements [12], K is generally unknown, thus presenting a
handicap for OMP which relies on it. The experiments con-
ducted in [7] show us that the larger the number of nonzeros
K, the lower the percentage of correct reconstruction. For
N = 256 and K = 30 which correspond to 12% of the
original signal, at least 75% of measurements (m > 196)
are needed to achieve 70% chance of correct reconstruction.
Since the usefulness of compressive sensing lies in situations
where m is reasonably below N , the number of measurements
taken should be considered carefully for a given K. Following
the same example, for K = 12, roughly 5% of N , 52 mea-
surements only give us 5% chance of correct reconstruction.
One possible option would be to increase m. However, by
increasing the number of measurements, i.e. the length of y,
the processing time using OMP becomes longer. Indeed, the
first step and last step of the algorithm highly depend on the
residual involved in the matrix multiplications operated every
iteration.

IV. PROPOSED METHOD

The lack of flexibility on the compromise between accuracy
of reconstruction and processing time makes OMP unfit for our
application related to low-cost sound monitoring audio signals.
Therefore, to solve (2), another approach is required. Instead
of finding the answer to (3), we have tested a minimum l1-
norm reconstruction process where the proposed method tries
to solve the following problem

ŝ = argmin||s||1 such that Θs = y. (4)

This convex optimization problem can be solved via numerous
algorithms [13][14]. One particular example of such is LASSO
[15] which goal is to directly find the sparse solution s. In this
case, (4) can be rewritten as

minimize
1

2
||Θs− y||22 + λ||s||1, (5)

where λ > 0 is a regularization parameter.
A general approach to convex optimization problems is the

Alternating Direction Method of Multipliers (ADMM) [9].
As a powerful and flexible algorithm, it is applicable for l1-
norm problems unlike usual methods such as subgradient or
Newton’s. One of the advantages of ADMM is the separation
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Algorithm 1 ADMM for Group Lasso adapted to Gabor
dictionary
Input: observation vector y and sensing matrix Θ
Output: approximation for signal, ŝ

1: Initialization: s0 = 0, z0 = 0, u0 = 0, k = 1, λ0 = 0,
j = 0, jend = Kg

2: Initialize: λ > 0, ρ > 0, kend ≥ 2
3: Compute inv = (ΘTΘ+ ρI)−1 and prod = (ΘTy)
4: for k < kend do
5: sk = inv(prod+ ρ(zk−1 − uk−1))
6: for j < jend do
7: zk

j = Rcjλ/ρ(s
k
j + uk−1

j )
8: j = j + 1
9: end for

10: uk = uk−1 + sk − zk

11: k = k + 1
12: end for
13: ŝ = sk

of the solution s in two distinct parts s and z making
parallel computing possible and simple. Since we are seeking
a parsimonious model of the signal, a version of ADMM for
LASSO [9] solves (4) expressed as

minimize f(s) + g(z) subject to s− z = 0

with f(s) =
1

2
||Θs− y||22 and g(z) = λ||z||1, (6)

where ADMM handles the sparsity of the solution by process-
ing z through a soft thresholding function every iteration.

In the frame of our application, we wish to apply the
Gabor dictionary as our transform domain for the audio signal.
Considering its properties, it is necessary to adapt the current
form of the problem. By applying ADMM for Group Lasso
[9] (cf. Algorithm 1) in our specific case, we are able to deal
with the pairs of cosine and sine present in the sparse solution
s thanks to a block soft thresholding function. Although,
those groups are joined to a certain degree, they can be
handled separately which makes the strength of this algorithm.
Consequently, the problem can be rewritten as

minimize f(s) + g(z) subject to s− z = 0

with f(s) =
1

2
||Θs− y||22 and g(z) = λ

Kg∑
j=1

cj ||zj ||2, (7)

where Kg = N
2 is the size of the Gabor dictionary, j is

the index of frequency components, zj is the two-element
vector extracted from z corresponding to the j-th pair of
cosine and sine, and cj is the weight parameter for the j-
th frequency component. In this study, cj is set to cj = 1 ,
i.e., all frequencies are treated equally.

The proposed is solution presents several features to sim-
plify its implementation and gain in processing speed. First,
the sparsity of the output s is handled by the block soft

thresholding function (cf. step 7 of Algorithm 1) corresponding
to

RL(a) =

(
1− L

||a||2

)
+

a, (8)

where the threshold value λ
ρ is manually set once. Second, it

is important to note that with ρ > 0, inv is always invertible.
Finally, the computation of inv and prod before the start of
the loop and the possibility to set manually kend allow us to
save considerably on the processing time.

ADMM focuses on minimizing s, then z and updating
both of the vectors in a final step. Therefore, the algorithm
refines the entire output s progressively throughout the it-
erations. As stated in [9], in practice, ADMM has a slow
convergence rate when the expectation is a highly accurate
result. However, in the framework of our application, such
accuracy is not necessary, and one of the requirements is to
provide an exploitable outcome allowing the user to spot the
anomalies in the reconstructed signal in order to carry out
an efficient maintenance of the machine. Unlike other convex
optimization methods, ADMM is capable of both handling l1-
norm problems and present an acceptable result in a few tens
of iterations.

When comparing OMP and ADMM regarding their method
and output, for highly sparse signals, OMP is more likely to
provide a better result than ADMM since the nonzero elements
in the solution are well spaced thus reducing the chance of
error when finding their indexes. However, for low sparse
signals found in low-cost sound monitoring audio signals,
ADMM appears to be a more promising approach as the
different steps of the algorithm do not directly depend on the
sparsity of the input, leading to a result that is acceptable
and acquired in a reasonable amount of time. Besides, unlike
OMP, ADMM is only slightly affected by the number of
measurements, i.e. the length of y.

V. EXPERIMENTAL RESULTS

The aim of the following experiments is to show that with
the proper reconstruction algorithm adapted to the sampling
process used on the input signal, we can, rapidly and accu-
rately, reconstruct an audio signal from few data, allowing
the user to reduce the equipment expenses while providing a
efficient product maintenance when needed. In order to better
illustrate our application and evaluate the performance of the
proposed method compared to the conventional one, we have
conducted several tests on an audio signal generated by a
printer whose spectrogram is shown below (cf. Fig.1). It is
a 3.125 seconds 16-bit audio signal sampled at 16 kHz.

We apply the hamming window with a frame size set to
1024 and a frame shift of 128. Thus, for a full input of
50000 points, we repeat the reconstruction process 390 times.
We decide to take our measurements via a coprime sampling
technique - a method studied in the recent years for signal
processing with promising results [16][17]. Initially, we set the
coprime values to 5 and 7 in order to obtain 322 measurements
- corresponding to roughly 30% of data from the original
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Fig. 1. Spectrogram of the printer’s audio signal.

signal for each frame since 1024 × ( 15 + 1
7 − 1

35 ) = 322.
Therefore, the measurement matrix Φ has for dimensions
322× 1024. Besides, each part of the frame is represented in
the Gabor dictionary Ψ whose dimensions are 1024 × 2048.
The reconstruction algorithm solves (2) with m = 322,
N = 2048 and Θ of dimensions 322×2048 with the following
parameters: ρ = 1 and λ = b × max |ΘTy| [18] where the
coefficient b = 0.0006.

The results that we will first display and comment in this
paper are done accordingly to the above settings and will
demonstrate two points from the three ones mentioned in this
paper: the compromise between processing time and accuracy
and the influence of the number of measurements taken. We
determine the accuracy of reconstruction with the signal-to-
distortion ratio (SDR) which is calculated as follows

SDRdB = 10 log10

( Poriginal signal
P(original signal - reconstructed signal)

)
,

(9)
where P is the power of the signal. As for the processing
time, it is mainly controlled by the number of iterations.
Since we run the algorithms 390 times, in all the figures, we
display the average processing time and the average accuracy
of reconstruction. In the case of ADMM, we can neglect
the computation time of inv (cf. Algorithm 1) as it can be
calculated independently of the frames. Since we decided to
set a frame shift of 128, we compute in a prior process 8
different inv which are repetitively used successively in the
step 5 of Algorithm 1. Consequently, all the processing time
results for ADMM do not include inv.

According to Fig.2, we can observe that from only a few
iterations ADMM outperforms OMP in terms of accuracy
for roughly the same processing time. ADMM’s performance
remains stable regardless of the number of iterations while
OMP’s accuracy declines progressively after hitting its op-
timum. This study validates our expectation where ADMM
offers a better compromise between processing time and
accuracy in the reconstruction of an audio signal.

As suggested previously, to improve OMP’s accuracy, one
option would be to increase the number of measurements
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Fig. 2. Performance of OMP and ADMM regarding the processing time
and the accuracy of reconstruction (SDR). The parameters changed are kend

and KOMP . The optimum is reached when kend = 11 for ADMM and
KOMP = 30 for OMP.
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Fig. 3. Influence of the number of measurements m - quantity of a priori
known data about the original signal - on the performance of OMP and
ADMM in terms of processing time and accuracy of reconstruction for
N = 2048, K = 60, kend = 11 and KOMP = 30

taken. For this experiment, we modify the coprime sampling
settings in order to obtain 227 (8&9), 256 (7&8), 322 (5&7),
409 (4&5), 512 (3&4) and 683 (2&3) measurements. Fig.3
displays the result. Following the theoretical expectation,
OMP is longer to achieve the signal reconstruction when
the number of measurements becomes higher, unlike ADMM
which stays at the speed of 0.54sec. When considering the
accuracy of reconstruction, the latter logically increases with
the number of measurements. In this regard, ADMM proves
to be more effective than OMP as well. This observation
supports ADMM’s reliability where the quantity of a priori
known information about the original signal does not harm
the algorithm’s efficiency.

The third and last point to highlight in this paper is the
performance of those algorithms regarding the number of
nonzero elements of the signal to reconstruct. A notable
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Fig. 4. Influence of the number of nonzeros on the performance of OMP
and ADMM in terms of accuracy of reconstruction for N = 100, m = 50,
kend = 11 and KOMP ranging from 1 to 25 (Graphs for K ∈ [2; 50] and
[16; 50]).

remark is the challenge of correctly reconstructing a signal
which is not exactly sparse since the problem solving for (2)
increases in difficulty with the number of nonzeros. In order
to determine the effect of this parameter, we change it in a
simulation program where the reconstruction algorithm tries
to reconstruct a random sparse signal s of N = 100, in the
Gabor dictionary, from m = 50 measurements in y. We set
ρ = 1, b = 0.035 and kend = 11. We run the program 1000
times to generate different inputs to reconstruct. As shown by
Fig.4, we test the number of nonzeros K from 2 to 50. For each
one of them, we decide to plot the 25th, 50th (equivalent to the
median) and 75th percentile. When the signal is highly sparse
(K = 2 and K = 6), OMP reacts perfectly by guaranteeing
an accurate result. Even though we work with m = N

2 ,
the reconstruction performance inevitably decreases when K
increases. For K = 10, we can clearly observe that OMP can
be an unstable algorithm since its accuracy of reconstruction
ranges between extreme values. ADMM remains stable and
robust to the increase of K. Moreover, for signals with a large
number of nonzero elements, ADMM rapidly offers a better
accuracy than OMP. This confirms that a greedy approach is
less preferable in the case of sounds of machineries.

VI. CONCLUSION

With a proper sub-Nyquist sampling method, we propose a
reconstruction method based on the ADMM for Group Lasso
adapted for the Gabor dictionary as an accurate and rapid
reconstruction algorithm for audio signals resulting from such

processes. This proposed solution outperforms the conven-
tional one based on OMP. By explaining and commenting
the algorithm, we concluded on the reliability and flexibility
of ADMM that solves the undetermined linear problem of
compressive sensing while being robust to the quantity of
known information about the original signal and the number
of nonzero elements. Through our experiments, we confirmed
that for a given audio signals processed through low-cost
sound monitoring, the proposed method shows the best per-
formance in terms of accuracy, stability and processing time.
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