
H∞ Estimator for Gearbox Diagnosis in Variable
Speed Conditions

Amadou Assoumane, Philippe Ravier, Cécile Capdessus and Edgard Sekko
PRISME Laboratory, University of Orleans

21, rue de Loigny-La-Bataille, 28000 Chartres, France
Email: amadou.assoumane@etu.univ-orleans.fr

Abstract—It is well known that a faulty gearbox vibration
signal exhibits an amplitude modulation (AM) as well as a
phase modulation (PM). These modulation carry out a lot of
useful information about health condition. This paper presents
two approaches for modeling amplitude and phase modulation
in gearbox vibration signal. These last are used to describe
the vibration signal by a state space model. Then, the H∞
estimator is designed to estimate the modulation appearing in
the vibration signal. This estimator is obtained by minimizing the
worst possible amplification effects of disturbances (measurement
and modeling noises) on the estimation error. Such an estimator
does not require any assumption on the statistic properties of
the noises. Since additive noises in gearbox vibration signal are
non Gaussian and non white, this estimator is more suitable in
practical gearbox diagnosis. To evaluate the performance of the
two approaches, we use a synthetic and an experimental gearbox
vibration signal.

Index Terms—Gearbox diagnosis, variable speed conditions,
H∞ estimator, Legendre polynomials

I. INTRODUCTION

The analysis of gearbox fault is well established in the
literature. It is known that when a fault occurs on a gear
tooth, the vibration signal exhibits an amplitude modulation
(AM) and a phase modulation (PM). McFadden has proposed
a highly effective technique to estimate the modulations using
a time domain synchronous average and Hilbert transform
[1]. He proved that the analysis of these modulations is
powerful for detecting the presence of a fault. However, the
effectiveness of this technique is subject to the selection of
band width for the bandpass filtering [2]. This technique
fails when it comes to the non-stationary case. The non-
stationary phenomena exist in rotating machine due to the
change of the load (in crusher machine) and to the external
conditions for e.g in wind turbines. One of the methods to
process a non-stationary signal is order tracking. Two classes
of method were developed for this task: the non-parametric
and parametric estimation. The first class uses the joint time-
frequency methods to the analysis of non-stationary signal
since they are able to provide an overall view of the signal
structure. During these three last decades, many authors have
investigated this subject. And most of the non-parametric
techniques use the windowed Fourier Transform (WFT), the
Wigner-Ville distribution (WVD) and the wavelet transform.
The application of such a methodology concerns the analysis
of highly transient phenomena in machines. Their ability to
track these transient events is challenging. These methods are

limited by the well-known compromise between the time and
frequency resolution due to ’uncertainty principle’. In addition,
the resolution of the WFT depends on the type of the window
applied. Also, the performance of the WVD is seriously
influenced by the so-called ’cross-terms’ and ’negative energy’
that affect the interpretation of the time-frequency distribution
[3]. And the use of the wavelet transform is interesting to
analyze the relatively strong frequency component. But it
gives a significant error for dealing with higher frequency
components [4].

In the other hand, Kalman estimator is a tool among the
parametric estimation method for the diagnosis of gear fault
under non-stationary conditions. Zhan and Jardine [5], [6] have
presented an interesting modified Kalman estimator using an
adaptive autoregressive modeling for gear fault diagnosis. In
the 1997, Vold developed the so-called Vold-Kalman tracking
filter to estimate multiple frequency components [7]. Besides,
Pan et al. proposed some enhanced derivatives of the Vold-
Kalman filter [8], [9]. All these approaches based on the
Kalman estimator is designed with the hypothesis of a white-
Gaussian noise. This unrealistic assumption on the noises nat-
urally limits its application in several experimental situations.
And when the noises are colored, the Kalman based estimation
may becomes suboptimal [10].

In the 1990 years, a new approach to design an optimal
estimator from a linear state space model appeared. This esti-
mator called H∞ estimator consists in minimizing the worst
possible amplification effects of disturbances (measurement
and modeling noises) on the estimation error. The main interest
of the H∞ estimator is that it doesn’t require any assumption
on the noise source statistics. The noise signals must only be of
bounded energy. In practical vibration signal analysis, where
there is significant uncertainty in the noise statistics and the
vibration signal model, the H∞ estimator is more suitable. The
effectiveness of this estimator has already been demonstrated
in these previous works [11], [12]. In this work, we use this
estimator to estimate the modulation signal.
The H∞ estimator is used with a state space model. And
one of the most used method to model these modulation
is the stochastic smoothness constraint [8]. It consists to
assume that the second derivative of the modulation is a white
Gaussian noise. In fact, this approach is equivalent to model
the modulation by a polynomial. In this paper, we introduce
a new approach using an orthogonal polynomial, ”the discrete
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Legendre polynomials”, for modeling the modulation. Then,
we compare the performances obtained by the two modeling
approach combined with the H∞ estimator.
This paper is organized as follows. In Section II, the H∞
estimator is introduced. In the same section the two approaches
for modeling the AM and the PM are presented. Based on
the output signal-to-noise ratio, the performance of the H∞
estimator using the two modeling approaches is analyzed in
Section III. In Section IV, we present the results obtained
by applying the proposed method to experimental gearbox
vibration signal. Our conclusions are given in Section V.

II. H∞ ESTIMATION ALGORITHM

A. From vibration signal to state model

The gearbox vibration signal can be modeled by AM-
PM process where the carrier frequency is the gear meshing
frequency and its harmonics [1]. If a localized fault occurs
on gear tooth, the modulation functions will be affected and
will change periodically at the rotating frequency of the faulty
gear. Thus, under non-stationary conditions, the time-varying
modulated signal in discrete time can be described by the
following equation

yk =
M∑
i=1

Ai,k cos (θi,k + φi,k) + vk (1)

where:
• M is the a priori significant number of components of

the observed signal,
• θi,k = 2πi

∑k
j=1

fmesh,j

fs
for i = 1...M is the instan-

taneous angular displacement in which fmesh,j is the
instantaneous gear meshing frequency at jth instant and
fs is the sampling frequency,

• vk is the unwanted part of the signal at kth instant,
• Ai,k and φi,k are respectively AM and the PM functions

of the ith component.
The amplitude and phase modulation include components
having the periodicity of both the driving and driven gear.
Define the carrier frequency matrix by hi,k =[
cos(θi,k) − sin(θi,k)

]T
and the instantaneous modulating

envelope by ai,k =

[
Ai,k cos(φi,k)
Ai,k sin(φi,k)

]
=

[
aci,k
asi,k

]
, the

signal is then written as

yk =
M∑
i=1

hT
i,kai,k + vk (2)

where [•]T stands for the transpose symbol. The AM and PM
of interest are now embedded in the envelope ai,k. These last
are unknown and time-varying. Two approaches of modeling
these modulations are presented in this paper.

1) The stochastic smoothness constraint (SSC): This ap-
proach is presented by Pan et al [8] where

ai,k+1 − 2ai,k + ai,k−1 = wk (3)

The state model related to this approach is developed in [8].
This model is equivalent to use a polynomial of degree two
which may be non orthogonal.

2) Orthogonal Legendre polynomial approximation
(OLPA): This approach consist to model aci,k and asi,k by a
polynomial function of power of time. For this, we use the
discrete orthogonal Legendre polynomial. Jabloun et al. [?]
mention that using orthogonal polynomial base improves the
estimation accuracy. Our modeling is as follows:

aci,k =
D∑

d=0

αi,d,kLd,k (4)

and

asi,k =
D∑

d=0

βi,d,k(t)Ld,k (5)

where αi,d,k and βi,d,k are the model parameters and Ld,k

is the Legendre polynomial of degree d for d = 0, . . . , D.
The discrete Legendre polynomial is given by this following
recursive relation [17]:

L0,k =1 (6)

L1,k =1− 2k

N
(7)

Ld,k =(2d− 1) (N − 2k)Ld−1,k (8)

− (d− 1) (N + d)Ld−2,k

d (N − d+ 1)
, d ≥ 2

where N is the length of the data. The set {Ld,k}0≤d≤D are
the discrete polynomials orthogonal over the range 0 ≤ k ≤
N . Define the vector

xi,k =
[
αi,0,k . . . αi,d,k βi,0,k . . . βi,d,k

]T
(9)

and let all the model parameters be assembled in the vector x

xk =
[
x1,k

T x2,k
T . . . xM,k

T
]T

(10)

Similary, let

bk =
[
L0,k L1,k . . . LD,k

]T
(11)

be the Legendre polynomial base and

h̄i,k =
[
bk

T cos(θi,k) −bkT sin(θi,k)
]T

(12)

be the ith measurement vector. Hence, we can write the
vibration signal as

yk = hk
Txk + vk (13)

where hk =
[
h̄1,k

T
h̄2,k

T
. . . h̄M,k

T
]T

is a known
measurement vector. Since the parameter vector are time-
varying, we impose a first order stochastic smoothness con-
straint. This can be written as

xk+1 = xk +wk (14)
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where wk is the unknown drift term. Equations (13) and (14)
represent the state model of the vibration signal embedded in
the following system{

xk+1= xk +wk

yk =hk
Txk + vk

(15)

Then, the fault detection problem is stated as follows. Given
a measurement yk, we have to estimate the model parameters
αi,d,k and βi,d,k for i = 1, . . . ,M , d = 0, . . . , D and k =
1, . . . , N .

B. H∞ estimator

Consider the state space model (15). We make no assump-
tions on the nature of the unknown quantities wk and vk.
They must only have bounded energy. Let ek = xk − x̂k be
the estimation error when x̂k is the estimate of xk. Different
from the Kalman estimator which minimizes the variance of
the estimation error, the H∞ estimator is designed to provide
a uniformly small estimation error for any wk, vk and x1.
The cost function for that is then given by

J =

∑N
k=1 ‖ek‖

2

‖e1‖2P1
−1 +

∑N
k=1

(
‖wk‖2Q−1 + ‖vk‖2R−1

) (16)

where (e1,wk, vk) 6= 0, x̂1 is an a priori estimate of x1

and e1 represents unknown initial condition error, P1 > 0,
Q > 0 and R > 0 are the weighting matrices and ‖xk‖S =
xk

TSxk. Our goal is to find an estimate x̂k that minimizes
J . Since the direct minimization of J is not easy, we choose
instead a performance bound and seek an estimation strategy
that satisfies a chosen threshold. Therefore, the H∞ problem
consists on finding an estimate x̂k for among all possible xk

such that
supJ ≤ 1/γ (17)

where ”Sup” stands for the supreme value and γ is the
user-specified performance bound. The problem formulated
above shows that the H∞ estimator guarantees the smallest
estimation error over all possible disturbances of finite energy.

Then, the solution of the H∞ problem is given by the
following theorem [14].
Theorem: Let γ > 0 be the user-specified performance bound.
Then, there exists an H∞ estimation for xk if and only if
there exists a stabilizing symmetric solution Pk > 0 to the
following discrete-time Riccati equation:

Pk = Pk−1

[
I − γPk−1 + hkR

−1hk
TPk−1

]−1
+Q (18)

Where I is the identity matrix. Then, the H∞ estimation is
given by

x̂k = x̂k−1 +Gk

(
yk − hk

T x̂k−1

)
(19)

where Gk is the H∞ gain given by

Gk = Pk

[
I − γPk−1 + hkR

−1hk
TPk−1

]−1
hkR

−1

(20)

Note that in this study we take the optimal value γopt of γ. This
optimum corresponds to the greatest value of γ that guarantees
the stability of the matrix Pk over all samples. This stability
is reached, according to Yaesh and Shaked [15], when the
module of Pk’s eigenvalues are less than one.

III. SIMULATION ANALYSIS

In this section, a simulated gearbox vibration signal is used
to evaluate the effectiveness of the proposed method over the
previous scheme in detecting a gear fault, both combined with
the H∞ estimator. The vibration signal, sampled at 10 kHz
during one second, is computed using (1). One component of
the signal is modeled here and in which the gear meshing fre-
quency varies sinusoidally as fmesh,k = 500+ 250 sin (2πtk)
where tk is the discretized time. The AM and the PM is
composed of the two first harmonics of the rotating frequency
such as

Ak =
∑2

p=1

(
1 + ap cos

(
2πp

∑k
j=1

fr,j
fs

))
(21)

φk =
∑2

p=1

(
bp sin

(
2πp

∑k
j=1

fr,j
fs

))
(22)

where a1 = 0.8, a2 = 0.5 and b1 = b2 = 0.7 and the rotating
frequency fr,k = fmesh,k/20. A colored and white Gaussian
noise is added to the simulated signal such that the input
signal-to-noise ratio varies from 6 dB to 0 dB. The colored
noise is a white noise passes through a band-stop filter within
the interval [2000, 4000] Hz. We use the H∞ combines with
the SSC and the OLPA approach to estimate the AM and the
PM. To measure their performance, we evaluate the output
signal-to-noise ratio calculated by

SNR = 10 log 10

∑N
k=1 sk

2∑N
k=1 (sk − ŝk)

2
(23)

where sk is the noiseless simulated signal and ŝk is the
estimate or filtered signal. The signal waveform and its time-
frequency representation, when the intput SNR = 0 dB, are
exhibited on Fig. 1.

Fig. 1. Simulated signal with colored noise: a) Waveform b) Short-time
Fourier spectrogram

In this simulation, Q = 0.01I for the SSC model and
Q = 10−5I for the OLPA model. R = yyT , γopt = 0.01
and P1 = 10−6I for the two models. The results of the
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TABLE I
PERFORMANCE COMPARISON OF THE TWO APPROACHES

Estimation Input SNR Output SNR (dB)
Model (dB) White Noise Colored Noise
SSC 6 8.72 7.91

OLPA 6 10.70 9.86
SSC 3 7.77 6.57

OLPA 3 9.43 8.25
SSC 0 6.46 4.86

OLPA 0 7.88 6.41

Table I, obtained after 400 Monte-Carlo simulations, show the
performance comparison between the two model of estimating
the AM and the PM. Based on the output signal-to-noise ratio,
the H∞ using the Legendre polynomial gives an estimate of
xk better than the use of the SSC. When the SNR = 0 dB the
use of the OLPA improves the estimation of the SSC by 1.55
dB. In all the situations, the proposed method takes advantage
over the previous one.
To examine the details of the estimation, the waveforms
are plotted on Fig. 2. By comparing these waveforms, we
notice that using the OLPA approach (in black line) performs
better than the SSC modeling. The SSC model (in red line)
provides a quite good estimation in slow variation regions
of modulations. But it increases estimation error in the rapid
transient zones. Besides of that, the OLPA approach gives a
smooth estimate with a small estimation error whatever the
region of the signal. This advantage leads to state that the H∞
estimation using an orthogonal Legendre polynomial base is
more efficient to track the AM and the PM in gearbox vibration
signal.

Fig. 2. Comparison between stochastic smoothness constraint and orthogonal
Legendre polynomial for SNR = 0 dB (a) Estimation of amplitude
modulation (b) Estimation of the phase modulation

IV. EXPERIMENTAL SIGNAL ANALYSIS

A. Test rig

The efficiency of the H∞ estimation using the OLPA mod-
eling for detecting gear fault under non-stationary conditions
was tested on a laboratory test-rig. Fig. 3 presents the test rig of
the University of Lyon lab used in this experiment. The system
is composed of one stage gear in which the input pinion and

the output gear have respectively 45 and 26 teeth. Both healthy
signal (when all gear are healthy) and faulty signal (when one
tooth of the output gear were purposely broken) are measured
during a run-up process in which the input pinion rotating
frequency fr1 increases from 6 to 24 Hz. For each situation a
signal of almost 10 s was recorded at 52 kHz. Only the three
first meshing frequency has been selected in all the analysis.
Our interest is to find in the AM the output gear order and
its harmonics, i.e ratio = 45/26 of the input shat order. The
order is expressed as the number of events per revolution. The
AM plotted here is the weighted mean of the three AM around
the meshing frequencies.

Fig. 3. Test rig: –1 Drive motor, –2 Optical encoder, –3 Accelerometer, –4
Healthy pinion, –5 Healthy gear, –6 Faulty gear, –7 Generator, –8 Speed
variator

B. Healthy and faulty signal analysis
Fig. 4 shows the vibration signal and the rotating frequency

in both situations. The corresponding rotating frequency fr1
(Fig. 4 c) and d)) is estimated from the optical encoder signal.
The H∞ technique has been used to estimate the AM. The
weighting matrices are R = 102, Q = 60I , P1 = 10−6I and
the performance bound is γ = 10−8.
Fig. 5 shows the AM in both situation and their squared
envelope order spectrum. The order spectrum is obtained by
applying the Fourier transform on the amplitude re-sampled
in angular domain. More details on this technique can found
in [18].
The faulty AM has more energy than the healthy AM. On Fig.
5 c) the order spectrum of the healthy case (blue line) exhibits
the two first harmonics of the output gear order. This may be
due to a misalignement or a native default on the gear tooth.
Compared to the order spectrum of the healthy AM, more
harmonics of the output gear order (1xratio, . . . , 5xratio)
emerge when a faulty gear is introduced. In addition, the
energy of the faulty AM is much more significant than that of
the healthy AM. This results corresponds to the expectation of
the experiment, hence the gear fault is successfully diagnosed.

V. CONCLUSION

In this paper, we have introduced a new method to diagnose
a gear fault in non-stationary operations based on the H∞
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Fig. 4. Measurement signal: (a) Healthy signal (b) Faulty signal (c) Rotating
frequency of healthy case (d) Rotating frequency of faulty case

Fig. 5. Amplitude modulation: (a) Healthy case (b) Faulty case (c) Squared
envelope order spectrum of amplitude modulation

estimation and the Legendre polynomial. This method is used
to enhance a previous approach adopted for modeling the
amplitude modulation and phase modulation. The comparison
between these approaches is made using a simulated signal
with both white and colored noises. The results provided have
shown that using the orthogonal Legendre polynomial base
highly improves the estimation accuracy over the stochastic
smoothness constraint. The improvement is significant mostly
in the rapid signal transition zones and in a high level noise
environment. The effectiveness of the new approach has been
applied to an experimental gearbox vibration signal where the
gear fault has been successfully diagnosed. Therefore, the H∞
estimation using the Legendre polynomial is appropriate in
practical gearbox diagnosis. Our future research will concern
the diagnosis of bearing faults using the proposed method.
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