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LTCI, Télécom ParisTech, Université Paris-Saclay
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ABSTRACT

Hyperparameter estimation is a recurrent problem in the
signal and statistics literature. Popular strategies are cross-
validation or Bayesian inference, yet it remains an active
topic of research in order to offer better or faster algorithms.
The models considered here are sparse regression models
with convex or non-convex group-Lasso-like penalties. Fol-
lowing the recent work of Pereyra et al. [1] we study the
fixed point iteration algorithm they propose and show that,
while it may be suitable for an analysis prior, it suffers from
limitations when using high-dimensional sparse synthesis
models. The first contribution of this paper is to show how
to overcome this issue. Secondly, we demonstrate how one
can extend the model to estimate a vector of regulariza-
tion parameters. We illustrate this on models with group
sparsity reporting improved support recovery and reduced
amplitude bias on the estimated coefficients. This approach
is compared with an alternative method that uses a single
parameter but a non-convex penalty. Results are presented
on simulations and an inverse problem relevant for neuro-
science which is the localization of brain activations using
magneto/electroencephalography.

1. INTRODUCTION

Hyperparameter setting is a classical statistics problem for
which a number of solutions have been proposed. In signal
processing, the AIC and BIC criteria are quite popular tech-
niques historically [2]. The SURE-based techniques [3] have
also been quite popular and recently explored for denoising
and compressed sensing applications [4, 5]. In a standard su-
pervised machine learning setup with independent and iden-
tically distributed (i.i.d.) observations, cross-validation (CV)
is the reference approach. Also, the Bayesian approach suited
for probabilistic models offers a principled way to estimate
hyperparameters using hyperpriors that introduce softer con-
straints than solutions with fixed parameter values. This ben-
efit yet usually comes at a price in terms of computational
cost. Finally, in a number of real scenarios, humans end up
setting hyperparameters, as they can have some expert knowl-
edge that can correct model mismatch.

In statistical machine learning an hyperparameter typi-
cally aims at limiting overfitting by controlling the model
complexity. In the particular case of regularized regression,
classically a scalar parameter balances between the data fit
and the penalty term. When using sparse regression, this pa-
rameter affects the sparsity of the solution, i.e., how many
covariates or regressors are used.

With CV, some independent observations are left out of
the inference and the hyperparameter values that yield the best
prediction performance on this data are selected. A search for
the best parameter can be done with a time consuming ex-
haustive grid-search, smooth optimization (see [6] and refer-
ences therein), sequential or even random search [7, 8]. The
CV approach however needs the i.i.d. assumption to be ful-
filled, which is not always the case in practice, e.g. when
working with signals or arrays of sensors as in the case of our
application to brain imaging.

Following [1], we consider a hierarchical Bayesian model
and propose to use a maximum-a-posteriori (MAP) estima-
tion for the hyperparameters. In this paper, we are particularly
interested in the high-dimensional regression setting using
group-Lasso-like structured sparsity. This formulation is par-
ticularly adapted to the ill-posed inverse problem occurring
in magnetoencephalography (MEG) and electroencephalog-
raphy (EEG) source localization. M/EEG are non-invasive
techniques that record the electromagnetic dynamical ac-
tivity produced by the brain on a few hundreds of sensors.
The objective is to identify the brain sources at the origin of
the signals. In the literature a number of approaches have
been proposed and MAP estimates that boil down to penal-
ized regression with smooth or non-smooth penalties are the
standard approaches employed by neuroscientists [9–15].

Here we study in particular the multi-task Lasso problem
also known as multiple measurement vectors (MMV) in sig-
nal processing [16]. This estimator uses a group-Lasso-like
penalty with mixed `1 and `2 norms. We first study the convex
case addressing the limitations of the parametrization of [1].
We then extend the model to have a vector of hyperparameters
to infer. It is compared to a non-convex `2,0.5 penalization.
The different strategies are tested on simulations and a source
reconstruction problem using public M/EEG data.
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Notation. The transpose of a matrix A ∈ RM×N is
denoted AT. A[i, :] and A[:, j] correspond to the ith row
and the jth column respectively. ‖A‖F indicates the Frobe-
nius norm, and ‖A‖p,q the `p,q mixed norm with ‖A‖p,q =(∑

i

(∑
j |A[i, j]|p

)q/p)1/q

. I denotes the identity matrix.

2. MATERIALS AND METHODS

2.1. The MMV regression model

The MMV regression model can be written as:

M = GX + E (1)

where M ∈ RN×T is a matrix of T measurements vectors
of dimension N . To give intuitions on notations, N can be
the number of sensors and T a number of time instants. Ma-
trix G ∈ RN×S is the design matrix, a known instantaneous
mixing matrix also referred to as the forward matrix where
N � S. This matrix relates the source to the measure-
ments. Matrix E is the measurement noise, which is assumed
to be additive, white, and Gaussian, E[:, j] ∼ N (0, I) ∀j.
X ∈ RS×T corresponds to the parameters (the sources) to be
estimated.

Assuming a known regularization parameter λ > 0, the
MAP estimator is given for the above model by:

X̂λ = arg min
X

1

2
‖M−GX‖2F + λP(X) , (2)

where P(X) is a regularization term and λ the trade-off pa-
rameter between the data fit and the penalization. In practice,
the value of λ depends on the problem at hand, the noise level,
and on the choice of regularization P(X). Finding a way to
estimate the hyperparameter with minimal user intervention
is therefore particularly important.

Recently Pereyra et al. [1] proposed a strategy for hyper-
parameter estimation in the context of MAP inference when
the prior or the regularizer is a k-homogeneous function. The
regularizer P in (2) is a k-homogeneous function if there ex-
ists k ∈ R+ such that P(ηX) = ηkP(X),∀X ∈ RS×T and
∀η > 0. The k-homogeneous condition is satisfied for all
`p,q mixed norms. In this paper, we focus on the estima-
tion of the hyperparameters for hierarchical Bayesian mod-
els yielding convex `2,1 (P(X) = ‖X‖2,1) or non-convex
`2,0.5 penalties, which are respectively 1-homogeneous and
0.5-homogeneous. The non-convex penalization is solved us-
ing iterative reweighted convex optimization schemes, i.e.,
each iteration is a weighted `2,1-norm.

In [1], the fixed point strategy proposed is validated on an
image denoising problem using an analysis prior, i.e. where
the solution is not sparse but has a sparse representation in
some transformed domain. We now illustrate and explain why
the method from [1] cannot be used out-of-the-box when us-
ing a synthesis prior for an under-determined problem.

2.2. Hierarchical Bayesian modeling and reformulation

Bayesian modeling imposes hyperpriors, which are priors on
the distributions of the hyperparameters. A popular choice of
hyperprior is the gamma distribution:

p(λ) =
βα

Γ(α)
λα−1 exp(−βλ)1R+(λ), λ ∈ R (3)

where 1 denotes the indicator function, Γ is the gamma func-
tion, and α and β are the shape parameters.

Following [1] that uses a joint MAP estimator of λ and X,
one obtains that λ̂ should satisfy:

λ̂ =
ST/k + α− 1

P(X̂λ̂) + β
, (4)

where X̂λ̂ is the solution of (2) for λ = λ̂.
Looking at (4), one can observe that if ST is big, which

happens for high dimensional problems, the numerator can
significantly dominate the denominator, especially if the esti-
mate X̂ is very sparse. In practice using (4) in this scenario
results rapidly in huge values of λ and empty supports. This
issue is much less critical when using an analysis prior for de-
noising as in [1], as the size of the unknown coefficients is in
this case NT , where NT � ST .

To overcome this problem, we rewrite the objective func-
tion in such a way that we obtain the same solution X but
with a λ

ST . This can be written as:

X̂ = arg min
X

ST

2
‖M−GX‖2F + λP(X) (5)

Note that this is just a reparametrization of (2). In practice,
this boils down to multiplying M and G by

√
ST . However

this only solves one difficulty in the parameter’s update. An-
other disadvantage is that none of the parameters in (4) take
into account the scale of G. In the next section, we explain
how to properly calibrate the hyperprior parameters α and β
given M , G and P .

2.3. Setting hyperpriors with a single hyperparameter

As in [1], gamma hyperpriors are used to derive two iterative
algorithms that simultaneously estimate a single hyperparam-
eter λ and the entries of X, yet the values of α and β are
still to be defined. In [1], it is suggested to set α and β to
1, which turns out to be inappropriate for underdetermined
inverse (deconvolution) problems as our brain imaging prob-
lem of interest.

A first observation is that α and β should default to rea-
sonable values and be insensitive to trivial changes in matrix
G such as scaling, i.e., multiplying G by a scalar. This is the
problem we investigate now.

In (4), the numerator would not be affected by a rescal-
ing of G. However, the denominator that contains P(Xλ?)
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would. To make the estimation robust to changes of G such as
scaling, one therefore needs to modify the numerator, hence
make α a function of G. Setting α to 1 independently of the
problem, as in [1], is inadequate.

To set the value of α, we propose to take advantage of
the fact that if P(X) = ‖X‖2,1 one can analytically compute
λmax, which is defined as the smallest regularization param-
eter for which the solution is zero [17]. It is given by:

λmax = ‖GTM‖2,∞ = max
i
‖(GTM)[i, :]‖2. (6)

Parameter λ can therefore be parametrized as a fraction, or a
percentage, of λmax. This allows us to have a good a priori
guess on the peak of the gamma distribution. We set the peak,
a.k.a. the mode, to mode = τ × λmax, with τ ∈ [0, 1].
Once the mode is known, it is straightforward to fix the value
of α: mode = α−1

β for α ≥ 1. From now on we fix α as:

α = mode× β + 1 = τ × λmax × β + 1 . (7)

Concerning the parameter β, for our specific problem of in-
terest we fix it so that 99% of the probability density of the
gamma distribution is between 20% and 70% of λmax. This
is motivated by the fact that in our case solutions are expected
to be extremely sparse, with only a handful of active brain
regions. This is of course application specific.

2.4. Estimation of a vector of hyperparameters

The penalization of the form P(X) = ‖X‖2,· are separable in
S groups of coefficients. As only a few groups are expected
to be active, a natural idea is to penalize less the important
groups. To do this, we propose to estimate one parameter
per group of coefficients or row of X using the convex `2,1
penalization. Rewriting (2) in the MAP framework leads to:

X? = arg max
X

p(X,M|λ) = arg max
X

p(M|X)p(X|λ) (8)

where p(M|X) is the likelihood function corresponding to
the first term in (2) and p(X|λ) is the regularization corre-
sponding to the second term in (2). This Bayesian formu-
lation requires to compute the normalization factor C(λ) in
p(X|λ) = exp(−λP(X))/C(λ). Computing this constant
C(λ) in general is intractable as it involves an integration.
Yet [1] showed that it admits an exact closed-form when the
penalization is k-homogeneous as C(λ) = Dλ−ST/k where
D = C(1) is a constant independent of λ [1].
We now propose a joint-MAP estimation with λ ∈ RS .
We look for (X?, λ?) ∈ R(S×T ) × RS which maximizes
p(X, λ|M). A sufficient condition of optimality is given by:

(0(S×T ), 0S) ∈ −∂X,λ log p(X?, λ?|M) (9)

i.e. 0S×T ∈ −∂X log p(X?, λ?|M),

0 ∈ −∂λi
log p(X?, λ?|M) ∀i, (10)
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Fig. 1. (a) Source identification results for different number of
sources measured with F1 score using α = 1 and β = 1. The
higher the number of regressors the worse is the performance.
(b) Estimated λ as a function of λinit for different values of
a and b. The red curve for β = 0.33 gives the best plateau,
which demonstrates that (a, b) shall be carefully adjusted.

where ∂X,λ is the set of subgradients (the subdifferential).
The optimization over X at iteration t satisfies (5):

X(t) = arg min
X∈RS×T

ST

2
‖M−GX‖2F +

∑
i

λ
(t−1)
i ‖X[i, :]‖

The next step is to optimize over λi,∀i. Eq. (10) leads to:

0 ∈ −∂λi
log p(X(t),M|λ)− ∂λi

log p(λ) (11)

Using p(X(t),M|λ) = p(M|X(t))p(X(t)|λ), one has that
−∂λi log p(X(t),M|λ) = −∂λi log p(X(t)|λ). We then use
the normalization factor C(λ) which gives:
−∂λi log p(X(t),M|λ) = ‖X[i, :]‖ + ∂λi logC(λ) and
∂λi logC(λ) = −ST

kλi
. Regarding the second term in (11),

(3) yields −∂λi log p(λ) = −α−1λi
+ β. Completing the

derivations, the equation for each λi, i ∈ [1 . . . S], reads:

λ?i =
ST/k + α− 1

‖Xλ? [i, :]‖+ β
. (12)

3. APPLICATION TO M/EEG INVERSE PROBLEM

3.1. Simulation

We generated a simulation dataset with N = 302 sensors,
T = 190 time samples and S = 1500 sources. Four sources
were randomly selected to be active with realistic waveforms.
The linear forward operator G was a random matrix, whose
columns were normalized to 1. Two levels of white noise
were added to the simulation. We always used τ = 0.5.

In order to illustrate the issue when using a synthesis prior
for large problems, we run the estimation of the hyperparam-
eter λ as suggested in [1] using the 0.5-homogeneous non-
convex prior. Fig. 1-(a) shows the F1 score of the source re-
construction (1 for good reconstruction and 0 for bad). The
source estimation is failing for almost all the range of data
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size. Fig. 1-(b) shows the results after reformulating the prob-
lem with different settings of α and β. One can notice that a
setting as in [1] with α = 1 and β = 1 always gives an esti-
mated λ around 1% of λmax which is not promoting the spar-
sity we are looking for in this kind of setting. For this aim,
we varied the values of β and computed α as defined before.
Fig. 1-(b) shows that for most values of β we have rather a
too low estimation of λ ≈ 1% or a too high λ ≥ 100% result-
ing in zero source found active. Interestingly setting β = 1/3

gives a plateau at λ̂ close to 0.3λmax. This is evidence of a
clear fixed point for the iterative process λ(t+1) = f(λ(t)),
where f is the update rule of λ in (4). We use β = 1/3 from
now on and its corresponding α.

Fig. 2 represents the simulated sources with stars and the
estimated ones with plain lines. Fig. 2-(a)-(b) display results
with the `2,1 and `2,0.5 norms respectively, using one hyper-
parameter initialized to λ = 0.5λmax. One can see that in
Fig.2-(a), the `2,1 norm recovers the four sources with an am-
plitude bias (the estimated amplitude is lower than the exact
one), and that several sources shown in light green are almost
flat around zero but still found as active sources. There is
no way to reduce the support without losing one of the four
simulated sources, i.e. the `2,1 norm with one hyperparam-
eter fails to recover the exact simulated sources. The `2,0.5
norm in (b) estimates the exact four source amplitudes with-
out amplitude bias thanks to the non-convexity [18]. On the
other hand, Fig. 2-(c) shows the results for the convex penalty
using one hyperparameter per source. It can be seen that it
is qualitatively equivalent to the non-convex penalty. The ad-
vantage of having one hyperparameter per source is to pick up
only the sources involved in the measurement M and drop the
extra almost-zero sources visible in Fig. 2-(a) (light green).
This extension produces sparser results and less amplitude
bias without casting the problem as non-convex.

3.2. Experimental results with MEG auditory data

We applied the estimation of a single hyperparameter and a
hyperparameter per source using the convex `2,1 penalty on a
real open dataset (MNE sample dataset [19]). It corresponds
to a dataset with N = 305 sensors, T = 55 time samples
and S = 7498 sources. Fig. 3 shows the source amplitudes of
the two auditory sources and their positions in the brain when
estimating a hyperparameter per source. When using a single
hyperparameter on the convex norm `2,1, multiple spurious
sources are found as active which replicates the simulation on
Fig.2-(a). These source estimates in Fig. 3 correspond to the
M100 peak (peak around 100 ms) generated in the vicinity of
the bilateral auditory cortices in superior temporal gyri (the
relevant auditory area).

4. DISCUSSION AND CONCLUSION

In this paper, we have explained how to address the limita-
tions of the fixed point iteration algorithm presented in [1]
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Fig. 2. Source reconstruction on simulated data. (a): Source
estimates obtained using `2,1 with one λ. The solution is not
sparse enough (the zero-sources in light green) and there is
an amplitude bias between the exact amplitudes (stars) and
the estimated ones (raw lines). (b): Good reconstruction of
the four sources using `2,0.5 and one λ, which is equivalent to
the reconstruction using the `2,1 norm with λ ∈ RS (c). Each
of the four sources is encoded with a color.

when solving high-dimensional sparse synthesis problems.
This required to reformulate the problem and to propose a
strategy to adjust the scale parameters α and β of the Gamma
prior when considering MMV problems with group-Lasso-
like penalties. Finally, we extended the approach to estimate
a vector of hyperparameters. The approach was applied to the
M/EEG inverse problem and then compared with the estima-
tion of a single hyperparameter using a non-convex penalty.
The results on simulated data show that using a vector of
hyperparameters with the convex norm is qualitatively equiv-
alent to the non-convex norm. This can be explained by the
fact that the optimization problem for the non-convex case
is solved using majorization-minimization techniques, which
lead to a convex problem with some reweighting. This turns
out to be similar to the multi-hyperparameter approach yet
using different update rules.

Concerning real data, we showed how the algorithm with
a vector of hyperparameters allows us to reconstruct the two
relevant sources in a MEG auditory dataset. Further investi-
gations will focus on the extension of this hyperparameter es-
timation approach to the sparse group-Lasso `2,1 + `1, which
contains two different hyperparameters aiming to relax the
temporal stationarity assumptions of simple group-Lasso-like
penalties [18, 20, 21].

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 259



Fig. 3. Source reconstruction on MEG auditory data (sam-
ple dataset [19]). Source amplitude of two sources (blue and
green) in the right and their corresponding positions in the
brain on the left.
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