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Abstract—We present a set of algorithmic complexity esti-
mates. We derive a normalized semi-distance that is shown
to outperform the state-of-the-art. We also propose estimators
for causality inference on directed acyclic graphs. Illustrative
applications include clustering of human writing systems and
causality assessment on novel drafts.

I. INTRODUCTION

Compared to classical probabilistic information theory, al-
gorithmic information theory (AIT) does not require estimat-
ing probability density/mass functions. It is solely based on
Kolmogorov complexity, which treats the data as is, and not
as being the realization of an underlying model. However, it
turns out that Kolmogorov complexity is not computable on a
universal Turing machine. One has to resort to approximations
thereof. Kolmogorov complexity is the size of the shortest
program able to reproduce the input when ran on a Turing
machine. While deeply rooted in source coding, we shall pro-
pose estimates based on the Lempel-Ziv family of algorithms
only, discarding the entropy coding stage usually found in a
modern compressor.

Our goal is to propose estimates for information-theoretic
quantities, namely self-, conditional and joint complexity
estimates of symbol sequences. Given these estimates, we
show how to derive a normalized semi-distance and estimates
for causality inference on directed acyclic graphs. We shall
compare the performance of our semi-distance with the Nor-
malized Compression Distance (NCD) [1].

II. RELATED WORKS

The pioneering works in the area [1], [2] have targeted the
design of an algorithmic distance between two sequences of
symbols. Let = and y be two sequences defined respectively
over the alphabets A, and A,. Let K (z|y) be the conditional
Kolmogorov complexity of the sequence x when the sequence
y is known. It can be shown [2] that, however not computable,
the following expression is a distance between = and y:

Ey(z,y) = max{K(z|y), K(y|z)}. (1)

In order to compare objects of different sizes, the following
normalization, known as the Normalized Information Distance
(NID), is the most appropriate choice [1]:

max{K (z|y), K (y|z)}

Given the definition of Kolmogorov complexity, it seems
reasonable to approximate it using a compressor C'. Another
approximation relates to the conditional complexity [1]:

K(zly) ~ K(zy) — K(y), 3)

where xy denotes the concatenation of sequences = and y.
From there, one can easily derive a “distance” measure,
known as the Normalized Compression Distance (NCD) [1]:
Clry) — min{C(x), C(y)}

max{C'(z), C(y)}

However extremely simple to compute once a compressor
is available, this approach suffers from several shortcomings:

NCD(z,y) =

“4)

o the compressor itself has builtin limitations (e.g. the
window size in LZ77-based compressors: it is 32KiB
for DEFLATE [3], hence one could theoretically compare
sequences of maximum 16KiB due to concatenation);

o the approximation of Eq. 3 does not ensure that only
sequences from y will be used to describe z, this is also
true for coders based on LZMA with a larger window
(4GiB for LZMA [4]).

The practical consequences of using a particular compressor
are summarized in [5].

The rest of this paper is devoted to proposing estimates that

do not suffer from these shortcomings.

III. WHAT CONDITIONAL INFORMATION?

It is certainly worth recalling that a LZ77 coder works
by finding references to subsequences it has already seen,
provided these references fall within a finite sliding window
of past symbols. Hence, the position of the current input
pointer plays a crucial role: everything beyond the size of
the window in the past is forgotten and cannot be used to
find subsequences. If a subsequence cannot be found in the
window, then a literal is emitted.

Our proposal is twofold:

1) to use a semi-infinite sliding window: at any step of
the LZ77 encoding, a subsequence can be referenced
arbitrarily far from the past.

2) to generalize LZ77 coding, Ziv-Merhav universal classi-
fication [6] and two other previously undefined settings
into a framework that allows to easily express our

NID(z,y) = , (2) estimates.
max{X (z), K (y)} The key issue in designing such estimates is how conditional
where K (x) denotes the Kolmogorov complexity of x. information is taken into account (second point above). For
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example, the conditional information in our LZ77 coding is
the entire past of the sequence x being encoded. For the Ziv-
Merhav relative coder [6], it is the entire past of the known
sequence y up to the current position when encoding the
sequence .

Hence, we need to parameterize R: the (possibly infinite)
sequence(s) in which references to subsequences can be made.
We have the following four cases, updated for any position of
the input sequence being encoded:

1) y|z: R is only the past of z:
This models the usual LZ77 operating mode when z = y
(needed in Sec. IV-C), and Axr = A,;

2) y|z: R is all of :
This models the usual Ziv-Merhav operating mode
(needed in Sec. V-A), and Ar = A,;

3) y_|z: R is the past of both x and y:
This will be needed later on in Sec. V-B, and Apr =
Ay UA;

4) y_['z: R is the past of y and all of x:
This will be needed later on in Sec. IV-C, and Ar =
Az U A

These types of conditional informations are depicted in
Fig. 1. When the conditional information is left unspecified,
we will use x { y to stand for either type of conditional
information.

future of y

B s s e

Fig. 1. Sequences R for the conditional information (from which references
are allowed), by darkening shades of gray: y-|*z, y-|x, y|*z and y|x. The
thick vertical bar represents the position of the current lookahead buffer when
encoding y.

Using any conditional information of the above, our LZ
generic coder will always produce symbols of the form (I, v),
which can be either:

o references: | > 1 is the length ! of a subsequence in the
dictionary, and, although it is not used in this paper, v is
the offset in R at which bytes should start to be copied;

e literals: | = 1 and v is the literal in x that should be
copied to the output buffer.

nternally, our dictionary data structure is a three-byte indexed array of
2562 unrolled linked lists. This trick allows us to reach subsequences of size
2: if the list indexed by the 3 bytes in the lookahead buffer is empty, then we
scan for emptiness the remaining 255 slots indexed by the first two bytes in the
lookahead buffer. If there are only empty lists, a literal has to be emitted (first
byte of the lookahead buffer), otherwise we return immediately the length
value 2 as soon as we stumble upon a non-empty list. However costly in
memory (especially regarding common L2 and L3 cache sizes, and the fact
that we never delete any reference in memory due to the semi-infinite sliding
window), we already enjoy decent running times. Multi-threaded dictionary
search shall be added shortly.
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Eventually, our coder will factorize a sequence x given
another, known sequence ¥ into n symbols by finding always
the longest subsequences:

21y~ (li,01) ... (ln,on) -
Let the set of lengths produced during factorization be L.

IV. A GENERIC, LZ-BASED CONDITIONAL COMPLEXITY
ESTIMATE

Besides using a compressor as in the NCD, the traditional
approach to estimating a Kolmogorov complexity is to count
the number of subsequences (see elsewhere the abundant
literature on the LZ complexity in biomedical signal analysis).
The symbol length information that we use instead, already
captures much of the amount of information in z that is
contained in R (as the results will demonstrate, it delivers
much sharper estimates than the size of compressed files as
in the NCD). We shall actually define a family of estimates,
parameterized by a so-called admissible function, which can
be used to tune the way the symbol length information is taken
into account.

A. Definitions
Definition IV.1. Admissible function.

A function f : N* — [0, 1] is said to be admissible iff it is
monotonically increasing.

Definition IV.2. Set value.
Let f: N* — R be a mapping and let S be a finite set of
non-zero natural numbers. The image of S by f is defined as:

[Sly =" f(s).
s€ES

The notation |S| = |S|1, will also be used to denote the
cardinal of S.

Definition IV.3. Generic conditional complexity estimate.
Given an admissible function f, and two non-empty se-

quences x € Al and y € AZ{ , our conditional complexity

estimate of x given y, denoted S¢(xz|y), is defined as:

1 Zg lf(l) - (|’Cw2y|f - 1) ‘ﬁx2y| —1

] |z]

Y

Se(zly) =

&)
which can be factorized like: S¢(xly) = SZ.

In Eq. (5), the two-terms factorization elements of Sy (xy)
can be interpreted the following way:

1) S is based on the length ratio of x that is explained by
y — we will show that it acts as a “spreading” factor that
emphasizes differences between both sequences so that
the final value allows for a sharper numerical estimate
(see Sec. VI-A);

2) Z is the normalization of our approximation of the
relative complexity [6]. This normalization is simply ob-
tained by dividing by the maximum number of symbols
that can be produced, namely |x|.
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Lemma 1. 0 < Sy(zy) < 1.
Proof. See [7]. O

B. Soft estimates

We start by choosing an admissible function f. The use of f
in Eq. 5 allows to modulate the choice of the references taken
into account, and how they contribute to the construction of
the estimate of the complexity.

Any choice for f will have to take meaninfulness of
references into account. Such meaninful references are first
defined below (in short, meaninful references are not caused
by randomness).

Definition IV.4. Meaningful references [8].
A reference (l,v) is said to be meaningful with respect to
1> lp =log| 4, IR|. (6)

Among all possible choices for f, we arbitrarily favor C'*™
functions and make use of a sigmoid. The very details on why
this is a reasonable choice are to be found in [7].

Definition IV.5. Sigmoid function.
The admissible sigmoid function for sequence R, denoted
%, is defined as:

B 1
- 1+e4+l%'

f= ()

C. Self-complexity and joint complexity

Let L, = L;), be the set of lengths produced during a
regular LZ77 factorization (i.e., a close version of that in [9]).

Definition IV.6. Self-complexity estimate.

Given an admissible funtion f and a non-empty sequence
x € Af, the self-complexity of x, denoted S¢(x), is estimated
as:

Sp(x) = Sg(x]z).

This allows us to propose an estimate for the joint complex-
ity of sequences = and y. The joint Kolmogorov complexity
can be understood as the minimal program length able to
encode both x and y, as well as a means to separate the two
[10]. Hence, there is no need to restrict the references only to
z, and we should allow references to the past of y as well. In
order to mimic the relationship K (z,z) = K(x), we choose
a length ratio as the way to separate both sequences.

Definition IV.7. Joint complexity estimate.

Given an admissible function f, and two non-empty se-
quences © € A} and y € AY, the joint complexity of x and
y, denoted Sy(x,y), is estimated as:

x
Sp(w,y) = S(y-I"z) + Sy(x) + log 4, (||y> .

Note that S¢(z,x) = S¢(x) because S¢(z-['z) = 0.

In order to validate our approach, we have measured the fol-
lowing absolute error: € = |S¢(z,y) — S¢(y, z)|. We obtained
a maximum average absolute error value below 2.37% (when
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comparing e.g., DNA and human texts), this value being much
lower when sequences encode the same type of data (e.g., two
DNA sequences), typically less than 1%.

V. NSD AND DIRECTED INFORMATION

In this section, we use the previous definitions to devise
both an algorithmic semi-distance and directed information
definitions that are key to the applications in Sec. VI.

A. The normalized semi-distance

Since Sy(z|"y) is normalized, we can now refer directly to
Eq. (1) to propose a semi-distance.

Definition V.1. NSD;.

Given an admissible function f, and two non-empty se-
quences x € Aj and y € A;r , our normalized semi-distance,
denoted NSDy, is defined as:

NSDj(x,y) = max {Sy(z['y), Sy (y[*x)} .

Note that NSD stands for Normalized Semi-Distance using
[. By default, when f = f/, it is simply denoted by NSD.

Theorem. NSDy is a normalized semi-distance.

Proof. See [7]. O

Note that using a LZ-based compressor actually makes the
NCD a semi-distance [7].

B. Directed algorithmic information

Causality inference relies on the assessment of a matrix of
directed informations from which a causality graph will be
produced. Due to the very nature of causality, some funda-
mental restrictions on the underlying graph structure apply.
In particular, most authors focus on directed acyclic graphs
(DAG) [11] and we will hereafter follow this line. Therefore,
we start by defining estimates of directed algorithmic infor-
mation.

We would like to stress that causality has received several
interpretations and it is, among other considerations, also
dependent on the type of data at hand. We will consider
two types of data here: time series [12] (for which a version
based on classical information theory has been proposed
[13]), and data that is not a function of time [11]. To some
extent, this relates to the difference between online and offline
applications. Therefore, we need to distinguish between the
two.

Let X = {xz;} be a set of sequences, and let us denote
X\Y the set from which the set of sequences Y was removed
(Y C X). When Y = {y}, we also write X\y.

We formulate the causal directed algorithmic information as
follows:

Definition V.2. Causal directed algorithmic information.

Vi # j, Clz; — x5) = K(x; | X\ {2, 2;}) — K(xj-lX\l’g%
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Fig. 2. Clustering ([14]) of writing systems using NCD/gzip All text
excerpts below 16KiB to accomodate the gzip/DEFLATE sliding window
size.

C(z; — x;) is the amount of algorithmic information
flowing from x; to x; when observing data online in real time
(think of the x; as e.g., outputs of ECG probes).

In practice, we compute:

Cs(@i = x5) = S(z;_ | X\ {zi, zj}) — Sz | X\xj). (8)

Similarly, for offline applications, when all the data is
available beforehand (think e.g., of text excerpts), we define
the so-called full directed algorithmic information as:

Definition V.3. Full directed algorithmic information.

Vi# g, Floi = x5) = K | X\ {zs, 2;}) =K (x;_|" X\zj).

®)
In practice, we compute:
Fy(wi = x5) = S [ X\{wi, 25}) = Sy "X \x;). (10)

Note that we are only considering the amount of information
flowing from one sequence to another. Hence, we are funda-
mentally fitting in the Markovian framework. And since we
remove the influence of all other sequences, we are actually
measuring the influence of the sole innovation contained in
one such sequence onto another.

VI. RESULTS
In this section, we present some results on real data. More
results, especially on synthetic data, are available in [7].
A. Clustering languages

The effect of the first term in Eq. (5) is clear: the trees are
much more airy (Fig. 3) than when using NCD/gzip (Fig. 2).
One has obviously a real advantage in taking into account the
lengths produced by the factorization.
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Fig. 3. Clustering ([14]) of writing systems using NSD.

B. An experiment in literature

Jean-Philippe Toussaint is a famous Belgian author of
French expression with a specific way of writing: he works
by producing paragraphs one after the other. Each paragraph
gets typeset, annotated by hand, typeset again, annotated again,
and so on until the author is satisfied. Some of his paragraphs
culminate to more than 50 successive versions. In Fig. 4, we
show the eight successive versions of one of his paragraphs
(he does not necessarily typeset exactly the annotated version
but makes changes in between). These versions are called
fragments in Fig. 4 and Fig. 5. As one can see in top and
middle plots of Fig. 5 (clustering using resp. Neighbor-Joining
and UPGMA), our semi-distance allows to correctly recover
the chronological order of the fragments.

On the lower graph of Fig. 5, all arrows have been kept in
order to allow in-depth inspection of the amount of differential
innovation. This representation is certainly richer as it allows
to grasp the amount of information that has been reused from
one fragment to another. All three results allow to correctly
recover the order with which the fragments have been actually
written by Jean-Philippe Toussaint.

VII. PERSPECTIVES

A careful reader has probably already noted that the spread-
ing term S alone could be seen as leading to a semi-distance in
its own right. Further work shall be devoted to (1) see whether
the term Z could be dropped, and (2) provide un-normalized
expressions for common complexities (self, joint).
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