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Abstract—We present a set of algorithmic complexity esti-
mates. We derive a normalized semi-distance that is shown
to outperform the state-of-the-art. We also propose estimators
for causality inference on directed acyclic graphs. Illustrative
applications include clustering of human writing systems and
causality assessment on novel drafts.

I. INTRODUCTION

Compared to classical probabilistic information theory, al-

gorithmic information theory (AIT) does not require estimat-

ing probability density/mass functions. It is solely based on

Kolmogorov complexity, which treats the data as is, and not

as being the realization of an underlying model. However, it

turns out that Kolmogorov complexity is not computable on a

universal Turing machine. One has to resort to approximations

thereof. Kolmogorov complexity is the size of the shortest

program able to reproduce the input when ran on a Turing

machine. While deeply rooted in source coding, we shall pro-

pose estimates based on the Lempel-Ziv family of algorithms

only, discarding the entropy coding stage usually found in a

modern compressor.

Our goal is to propose estimates for information-theoretic

quantities, namely self-, conditional and joint complexity

estimates of symbol sequences. Given these estimates, we

show how to derive a normalized semi-distance and estimates

for causality inference on directed acyclic graphs. We shall

compare the performance of our semi-distance with the Nor-

malized Compression Distance (NCD) [1].

II. RELATED WORKS

The pioneering works in the area [1], [2] have targeted the

design of an algorithmic distance between two sequences of

symbols. Let x and y be two sequences defined respectively

over the alphabets Ax and Ay . Let K(x|y) be the conditional

Kolmogorov complexity of the sequence x when the sequence

y is known. It can be shown [2] that, however not computable,

the following expression is a distance between x and y:

E1(x, y) = max{K(x|y),K(y|x)}. (1)

In order to compare objects of different sizes, the following

normalization, known as the Normalized Information Distance

(NID), is the most appropriate choice [1]:

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
, (2)

where K(x) denotes the Kolmogorov complexity of x.

Given the definition of Kolmogorov complexity, it seems

reasonable to approximate it using a compressor C. Another

approximation relates to the conditional complexity [1]:

K(x|y) ≈ K(xy)−K(y), (3)

where xy denotes the concatenation of sequences x and y.

From there, one can easily derive a “distance” measure,

known as the Normalized Compression Distance (NCD) [1]:

NCD(x, y) =
C(xy)− min{C(x), C(y)}

max{C(x), C(y)}
. (4)

However extremely simple to compute once a compressor

is available, this approach suffers from several shortcomings:

• the compressor itself has builtin limitations (e.g. the

window size in LZ77-based compressors: it is 32KiB

for DEFLATE [3], hence one could theoretically compare

sequences of maximum 16KiB due to concatenation);

• the approximation of Eq. 3 does not ensure that only

sequences from y will be used to describe x, this is also

true for coders based on LZMA with a larger window

(4GiB for LZMA [4]).

The practical consequences of using a particular compressor

are summarized in [5].

The rest of this paper is devoted to proposing estimates that

do not suffer from these shortcomings.

III. WHAT CONDITIONAL INFORMATION?

It is certainly worth recalling that a LZ77 coder works

by finding references to subsequences it has already seen,

provided these references fall within a finite sliding window

of past symbols. Hence, the position of the current input

pointer plays a crucial role: everything beyond the size of

the window in the past is forgotten and cannot be used to

find subsequences. If a subsequence cannot be found in the

window, then a literal is emitted.

Our proposal is twofold:

1) to use a semi-infinite sliding window: at any step of

the LZ77 encoding, a subsequence can be referenced

arbitrarily far from the past.

2) to generalize LZ77 coding, Ziv-Merhav universal classi-

fication [6] and two other previously undefined settings

into a framework that allows to easily express our

estimates.

The key issue in designing such estimates is how conditional

information is taken into account (second point above). For
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Lemma 1. 0 ≤ Sf (x ≀ y) < 1.

Proof. See [7].

B. Soft estimates

We start by choosing an admissible function f . The use of f

in Eq. 5 allows to modulate the choice of the references taken

into account, and how they contribute to the construction of

the estimate of the complexity.

Any choice for f will have to take meaninfulness of

references into account. Such meaninful references are first

defined below (in short, meaninful references are not caused

by randomness).

Definition IV.4. Meaningful references [8].

A reference (l, v) is said to be meaningful with respect to

R iff:

l > l0R = log|AR| |R| . (6)

Among all possible choices for f , we arbitrarily favor C∞

functions and make use of a sigmoid. The very details on why

this is a reasonable choice are to be found in [7].

Definition IV.5. Sigmoid function.

The admissible sigmoid function for sequence R, denoted

fs
R, is defined as:

fs
R(l) =

1

1 + e−l+l0
R

.

C. Self-complexity and joint complexity

Let Lx = Lx|x be the set of lengths produced during a

regular LZ77 factorization (i.e., a close version of that in [9]).

Definition IV.6. Self-complexity estimate.

Given an admissible funtion f and a non-empty sequence

x ∈ A+
x , the self-complexity of x, denoted Sf (x), is estimated

as:

Sf (x) = Sf (x|x).

This allows us to propose an estimate for the joint complex-

ity of sequences x and y. The joint Kolmogorov complexity

can be understood as the minimal program length able to

encode both x and y, as well as a means to separate the two

[10]. Hence, there is no need to restrict the references only to

x, and we should allow references to the past of y as well. In

order to mimic the relationship K(x, x) = K(x), we choose

a length ratio as the way to separate both sequences.

Definition IV.7. Joint complexity estimate.

Given an admissible function f , and two non-empty se-

quences x ∈ A+
x and y ∈ A+

y , the joint complexity of x and

y, denoted Sf (x, y), is estimated as:

Sf (x, y) = Sf (y-|
+x) + Sf (x) + log|Ax|

(

|x|

|y|

)

.

Note that Sf (x, x) = Sf (x) because Sf (x-|
+x) = 0.

In order to validate our approach, we have measured the fol-

lowing absolute error: ǫ = |Sf (x, y)−Sf (y, x)|. We obtained

a maximum average absolute error value below 2.37% (when

comparing e.g., DNA and human texts), this value being much

lower when sequences encode the same type of data (e.g., two

DNA sequences), typically less than 1%.

V. NSD AND DIRECTED INFORMATION

In this section, we use the previous definitions to devise

both an algorithmic semi-distance and directed information

definitions that are key to the applications in Sec. VI.

A. The normalized semi-distance

Since Sf (x|
+y) is normalized, we can now refer directly to

Eq. (1) to propose a semi-distance.

Definition V.1. NSDf .

Given an admissible function f , and two non-empty se-

quences x ∈ A+
x and y ∈ A+

y , our normalized semi-distance,

denoted NSDf , is defined as:

NSDf (x, y) = max {Sf (x|
+y), Sf (y|

+x)} .

Note that NSDf stands for Normalized Semi-Distance using

f . By default, when f = fs
y , it is simply denoted by NSD.

Theorem. NSDf is a normalized semi-distance.

Proof. See [7].

Note that using a LZ-based compressor actually makes the

NCD a semi-distance [7].

B. Directed algorithmic information

Causality inference relies on the assessment of a matrix of

directed informations from which a causality graph will be

produced. Due to the very nature of causality, some funda-

mental restrictions on the underlying graph structure apply.

In particular, most authors focus on directed acyclic graphs

(DAG) [11] and we will hereafter follow this line. Therefore,

we start by defining estimates of directed algorithmic infor-

mation.

We would like to stress that causality has received several

interpretations and it is, among other considerations, also

dependent on the type of data at hand. We will consider

two types of data here: time series [12] (for which a version

based on classical information theory has been proposed

[13]), and data that is not a function of time [11]. To some

extent, this relates to the difference between online and offline

applications. Therefore, we need to distinguish between the

two.

Let X = {xi} be a set of sequences, and let us denote

X\Y the set from which the set of sequences Y was removed

(Y ⊂ X). When Y = {y}, we also write X\y.

We formulate the causal directed algorithmic information as

follows:

Definition V.2. Causal directed algorithmic information.

∀i 6= j, C(xi → xj) = K(xj -|X\ {xi, xj})−K(xj -|X\xj).
(7)
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