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Abstract—We present in this work a novel approach for the
reconstruction of wired network topologies from reflection mea-
surements. Existing approaches state the network reconstruction
as discrete optimization problem, which is difficult to solve. The
(discrete) topology is optimized while the cable lengths are a
secondary result.

The contribution of this paper is the formulation of the
topology reconstruction as a continuous problem. The idea is to
rather optimize the (continuous) cable lengths and automatically
obtain the topology as a secondary result. Further we present
a heuristic algorithm to solve the optimization approximately.
Using simulated reflectometry data, we demonstrate the perfor-
mance of our approach.

I. INTRODUCTION

The reconstruction of the topology and cable lengths of
wired networks is of interest for many purposes. Applications
reach from fault detection in power grids [1] over communi-
cation network diagnosis for airplanes or automobiles [2], [3]
to the identification of unknown communication networks [4],
[5].

One possibility for fault location is the comparison of
measured reflections to a reference reflection measurement of
a healthy network followed by a localization technique where
the topology of the healthy network is a priori known [2], [3].
Unfortunately, measurements of the healthy network are not
always available.

Another possibility is to equip all cable ends with devices
for distance measurement. The rooted neighbor-joining algo-
rithm (RNJA) [6], [5], [4] is able to determine the network
topology uniquely and with low computational effort, however
communicating measurement devices at all leaf nodes of the
network are often not realizable. Cables without measurement
devices can not be detected by RNJA or its improved version
[7].

Finally, the topology reconstruction from a single [1], [8] or
multiple [9] reflection measurements does not require any prior
knowledge about the network or difficult distance measure-
ments of cable ends. Reflectometry is a powerful tool to obtain
information about the structure of a cable network. Though
commercial applications evaluate only the first reflection to
determine the distance to the nearest discontinuity on the
cable, recent approaches aim to reconstruct the whole network
structure. However, the problem of [1], [9], [8] is that the
estimation of the topology is a discrete problem (a cable
can either exist or not). An exhaustive search to try out
all combinations of cables (topologies) is computationally
complex. Hence [1], [9], [8] present iterative heuristics to
approximate the combinatory problem. Though [8] reduces

the number of possible topologies in comparison to [1] by an
additional plausibilisation of each iteration, [9] rather keeps the
most likely candidate of each iteration, resulting in an unique
solution. Another problem of [1], [8] is that they strongly rely
on a perfect resolution of all reflections (all reflections can be
distinguished). In practice, this is usually not achievable due
to limited bandwidth and dispersion of the cables.

In this paper, we formulate the discrete estimation problem
of [1], [9], [8] as a continuous problem, by optimizing the
cable lengths of a generic topology rather than the topology
itself. The idea is that a sufficiently large binary tree can
represent any topology by allowing cables with length of
zero. The optimization goal is to minimize the difference of a
single reflection measurement and simulated reflections from
the candidate. To solve this non-convex optimization problem,
we present an iterative approach. In contrast to [1], [9], [8] our
algorithm does not rely on the detection of single reflections,
hence it is easier to cope with overlapping reflections caused
by limited resolution or dispersion.

We use the following notations: Underlined variables denote
vectors or sets. ( · )T stands for transpose while ‖ · ‖ is the
Euclidean norm. The imaginary unit is denoted by j.

The rest of this paper is organized as follows: Sec. II revises
the signal model for the reflectometry. The network reconstruc-
tion problem is formulated in Sec. III. An iterative algorithm
to solve it is presented in Sec. IV. We show simulation results
in Sec. V and Sec. VI concludes the paper.

II. SIGNAL MODEL

We assume that the network structure can be modeled
as a tree topology, where inner nodes represent junctions,
leaf nodes cable ends and edges cables. Further we assume
that each cable has approximately the same characteristic
impedance Z0. We neglect junctions of only two cables,
as they are immeasurable discontinuities for reflectometry.
Also we assume that only the leaf nodes of the network are
connected to load, which has, compared to the characteristic
impedance of the wire, either a very high or a very low
impedance. We approximate the cable ends by an open end
(reflection coefficient Γ = 1) or short circuit (Γ = −1) respec-
tively [10]. These assumptions hold for many communication
or secondary power distribution networks.

Among others, well known reflectometry methods are time
domain reflectometry (TDR) and frequency domain reflectom-
etry (FDR) (see [11] for an overview). The algorithm proposed
in this work can be easily modified for any reflectometry
method. In this work we choose FDR, because
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Fig. 1. Example for a simulated FDR measurement with limited bandwidth
and dispersive cables. It can be observed that distant reflections overlap due
to dispersion and can not be resolved. c is the propagation speed of the
electromagnetic wave on the cable.
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Fig. 2. Generic network structure

• with FDR a more realistic model is possible because
dispersion and attenuation can be modeled by a frequency
dependent (complex) propagation parameter γ(f) and

• with FDR a more accurate model is possible because in
frequency domain a finite term is sufficient to model the
reflections, while in time domain an infinite series would
be necessary.

Fig. 1 shows the result of a simulated FDR measurement.
Existing commercial methods simply evaluate the first reflec-
tion to detect errors on the cable directly connected to the
measurement device. In contrast, the objective of this paper
and other recent approaches is to reconstruct the complete
network.

A FDR measurement is performed by evaluating a fre-
quency sweep at K frequencies,

f = [0, fs, 2fs, ..., (k − 1)fs, ..., (K − 1)fs]
T, (1)

at the measurement node of the network. The frequency
sweep is sent at the measurement node and the received
signal corresponds to the channel response at the measurement
node. The complex reflection coefficient Γm(k) for the k-th
frequency fk = (k − 1)fs is measured by calculating the
correlation between the sent and received signal or in hardware
by mixing the sent and received signal, low-pass filtering and
sampling. All Γm(k) can be concatenated to one measurement
vector Γm = [Γm(1), ...,Γm(k), ...,Γm(K)]T. The measured
signal in time domain rm is calculated by applying an inverse
discrete Fourier transform (IDFT) to Γm.

rm = IDFT(Γm) (2)

A method for the simulation of FDR measurement was pro-
posed in [10]. It is based on the calculation of the frequency-
dependent reflection coefficient Γs(k) at the measurement

point for the entire network. The idea is that the reflection
coefficient of a node can be expressed in terms of the reflection
coefficients of neighboring nodes and cable lengths.

In an iterative procedure, the reflection coefficients of the
nodes are transformed over a wire according to

Γb(u, k) = Γe(u, k) · e−2ϑuγ(fk), (3)

where Γe(u, k) is the reflection coefficient at the end of the
wire with index u for the k-th frequency, Γb(u, k) is the
reflection coefficient at its origin and ϑu denotes the wire
length. The reflection coefficient Γb(u, k) can be converted
to an impedance Zb(u, k) using eq. 4a and the impedances
Zb(1, k) and Zb(2, k) of two neighboring wires can be com-
bined by setting the impedances into parallel (eq. 4b). Then
the resulting impedance Ze(v, k) can be converted back to a
reflection coefficient Γe(v, k), eq. 4c.

Zb(u, k) = Z0
1 + Γb(u, k)

1− Γb(u, k)
(4a)

Ze(v, k) =
Zb(1, k)Zb(2, k)

Zb(1, k) + Zb(2, k)
(4b)

Γe(v, k) =
Ze(v, k)− Z0

Ze(v, k) + Z0
(4c)

Combining eq. 4a, eq. 4b and eq. 4c yields

Γe(v, k) =
Γb(1, k) + Γb(2, k) + 3Γb(1, k)Γb(2, k)− 1

Γb(1, k) + Γb(2, k)− Γb(1, k)Γb(2, k) + 3
. (5)

As an example, in Fig. 2 the reflection coefficients of nodes
s4 and s5 are transformed to node s2 using eq. 3. Then the
reflection coefficient of node s2 can be calculated with eq. 5,
which already includes the effect of edges e4 and e5. By
iteratively combining and transforming reflection coefficients
towards the measurement node, the reflection coefficient at
the measurement node Γs(k) of the whole network can be
calculated. This procedure is repeated for all frequencies
of f and the resulting Γs(k) are stacked in one vector
Γs = [Γs(1), ...,Γs(k), ...,Γs(K)]T. An IDFT yields the time
domain reflection signal of the simulated measurement

rs = IDFT(Γs). (6)

For a more detailed description of FDR, we refer the interested
reader to [1], [10]. With this underlying physical model, we
assume that Γm = Γs +N, (7)

where N is i.i.d. white Gaussian noise, e.g. from amplifiers
and other electronic circuits in the FDR measurement device.
According to eq. 2, rm = rs + n, (8)

where n is the spectrum of N .

III. NETWORK RECONSTRUCTION PROBLEM

Existing approaches for the reconstruction of a networks
topology from reflection measurement are based on a discrete
optimization problem. The algorithms primarily try to recon-
struct the topology, where a cable can either exist or not exist.
The cable length is just a secondary result. The examination of
all combinatorial possibilities to solve the problem perfectly is
computationally costly, hence only heuristic approaches exist.
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Fig. 3. Cost function of eq. 9 for two cable lengths ϑ1 = 30 and ϑ2 = 80,
if all other parameters were perfectly known.

In contrast to the existing approaches we formulate a
continuous optimization problem for the reconstruction of the
topology of a wired network. For this purpose, we choose a
binary tree as the topology of the network model, as depicted
in Fig. 2. The model parameters are the (continuous) cable
length ϑl of edge el and the node impedance zl of node sl.
As the networks leaf node impedances are usually much higher
or much lower than Z0, we approximate them by zl ∈ {0,∞}.
The lengths of all edges can be stacked in one parameter vector
ϑ = [ϑl]

T and the node impedances in z = [zl]
T. The topology

itself is not a model parameter with this approach.
Though the true topology may be different from a binary

tree, we can still apply the presented model by setting certain
cable lengths to zero. If, for example in Fig. 2, a junction of
4 wires shall be resembled at the node s1, the wire length ϑ2
of edge e2 of the network can be set to zero. The resulting
network generates the same reflectometry signal as if the edges
e3, e4 and e5 were connected directly to the end of the first
wire e1 from the measurement node.

With this novel model the maximum likelihood estimator
of ϑ is

ϑ̂ = arg min
ϑ,z

‖rm − rs(ϑ, z)‖2 (9)

where rs(ϑ, z) is the FDR simulation model of Sec. II with
the parameters ϑ and z.

An examination of eq. 9 shows that the optimization prob-
lem is non-convex in ϑ due to the nonlinear function rs(ϑ, z).
An example of the cost function is depicted in Fig. 3.

Unfortunately finding ϑ̂ in eq. 9 using an exhaustive search
is only feasible for very small topologies. To find ϑ̂ in eq. 9, a
grid search with M points for each element ϑl of ϑ would be
necessary. When L is the number of cables considered in the
binary tree this would lead to a total number of ML grid search
points resulting in a computational complexity of O(ML) for
the exhaustive search. A heuristic approach to approximate
eq. 9 by iteratively optimizing the elements of ϑ and z with
a complexity of O(LM + L2) is presented in the following
section.

input: Reflection measurement rm
output: Optimization result ϑ̂, ẑ

1: initialize set of candidate edges e = {e1}
2: while e 6= ∅ do
3: find edge el in e with nearest parent node

4: determine ϑ̂l, ẑl = arg min
ϑl,zl

‖rm − rs(ϑ, z)‖2

5: choose the edge en minimizing eq. 9 for ϑ̂l and ẑl
6: try to find inner node on new edge
7: if values for en improve the cost function then
8: add values for en to ϑ̂ and ẑ
9: add new candidates to e

10: end if
11: e = e \ {en}
12: end while

Fig. 4. Topology reconstruction algorithm

IV. NETWORK RECONSTRUCTION ALGORITHM

Our iterative approach is sketched in Fig. 4. In each iteration
one edge of the topology is examined to avoid the com-
putational complexity of the maximum likelihood estimator
(eq. 9) directly. With the sequential examination of the edges
we separate the degrees of freedom of eq. 9. We solve L
cost functions depending on one edge rather than solving one
cost function depending on all edges. The separation of the
optimization variables is motivated by the structure of the cost
function. The example in Fig. 3 shows that the cost functions
has clear trenches parallel to the axes, hence the coupling of
the parameters is rather loose.

The set e contains the candidate edges that still have to be
examined in the following iterations. Initially the set e contains
only the edge which is directly connected to the measurement
node of the network.

One iteration consists of six steps. In the first step (line 3)
the candidate edge el of e whose parent node is nearest to the
measurement node is selected. This will give the most general
result in the following optimization step.

The second step is the estimation of the wire length ϑl and
node impedance zl for the selected candidate edge in line 4.
In contrast to eq. 9, the cost function is optimized only for a
single element ϑl of ϑ resulting in a considerable reduction
of the computational effort. For the values of zl we consider
three possibilities, namely zl = 0 and zl =∞ for cable ends
(see Sec. II) or zl = 1

2Z0 if sl represents a junction. The
parameter ϑl is considered as continuous. The estimation of
ϑl is implemented with three independent optimizations for
all choices of zl ∈ {0, 12Z0,∞}. A grid search is performed
to find an initial estimate followed by a local (gradient-based)
optimization for refinement. As the optimization appends an
additional wire to the network, the impedance of the parent
node of the candidate edge has to be corrected. If the degree
of the parent node is 3, its impedance has to be set to ∞, if
the parent nodes degree is 2, its impedance has to be set to
Z0.

The third step (line 5) checks if there is another candidate
edge en in e which gives a better cost value than el. For
this purpose we create a candidate for all N edges in e. The
length of related edge ϑ̂n is chosen such that the distance
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from the measurement node and the leaf node of en and el
are equal. The candidate topology yielding the lowest cost
function value (eq. 9) is chosen in this step. The result is
refined by an additional local optimization of eq. 9 over ϑ
using the calculated edge lengths ϑ̂n as initial value.

One problem of the iterative estimation (separate optimiza-
tion of the edges) arises from the fact that a cable end
with z = {0,∞} can cause a reflection of higher amplitude
than that of an inner node (junction) which is closer to the
measurement node. The iterative procedure then might prefer
a solution which omits the inner node and resembles the
reflection caused by the cable end as this will lead to the
higher improvement of the cost function.

We account for this problem in the fourth step (line 6) by
searching for an inner node which splits the new edge into
two parts. Therefore another edge e2n is appended at the node
sn with a new end node s2n. The search is implemented by an
optimization of parameter t ∈ [0, 1] with zn = Z0, z2n = ẑn,
ϑn = tϑ̂n and ϑ2n = (1 − t)ϑ̂n. The optimization is (like in
the second step) implemented by a grid search over t followed
by a local (gradient-based) optimization resulting in value t̂.
If such a node is found, i.e. the cost function of the split edge
is better than that for the single edge, ϑn is set to t̂ϑ̂n and zn
is set to 1

2Z0.
In the fifth step (lines 7 to 10) the convergence of the

algorithm is evaluated. If the cost function value with the
additional edge found in this iteration is better than that of
the previous iteration, the new edge is added to the topology.
Candidate edges for the following iterations are added to e, if
the end of the new edge is an inner node (ẑn = 1

2Z0).
In the last step (line 11) the edge en is removed from the

set of candidate edges. The algorithm terminates if the set of
candidate edges is empty.

V. EXPERIMENTS

In our experiments we performed simulations using a MAT-
LAB implementation of the proposed algorithm. A set of 1000
random networks with a given number of nodes is generated
as test cases for the simulations. The wire lengths of the
networks are uniformly distributed between 10 and 100 m. In
our simulations, we use the (dispersive) propagation parameter
γ(fk) = 6.271 · 10−08f0.6702k + j 2.768 · 10−08fk, which we
measured for a cable of type RG58U. The algorithm uses a
simulated measurement to perform the reconstruction of the
networks topology and wire lengths.

As for a reflection measurement the power of the measured
signal rm depends on the structure of the network, we rather
use the power of the sent signal as reference for the SNR. We
define the SNR =

A2
s

σ2 with respect to the sent signal amplitude
As and noise variance σ2.

To evaluate the quality, the reconstructed network is com-
pared to the original. As in [9], we use the two scores αc

and αs for that purpose. The percentage of networks that
are completely reconstructed is given by the score αc. The
second score αs denotes the similarity between the original
and the reconstructed network. A metric based on the size
of the maximum common subtree (mcs) from [12] is used to
calculate αs. When G1 is the graph of the original network
and G2 is the graph of the reconstructed network and the order

|G| of a graph denotes the number of its edges, the score αs

is calculated as follows:

αs =
|mcs(G1, G2)|

max(|G1|, |G2|)
(10)

In order to compare the results of the proposed algorithm to
that of an existing approach we also examined the algorithm
which is presented in [1]. The ideal reflectometry model used
in [1] yields all reflections at the measurement node (with
limited number of reflections per branch) with exact locations.
It is assured that all reflections can be resolved, no matter how
close to each other they are and how low the signal amplitude
is. In practice, reflections are damped by the cable attenuation
and can not be resolved if they are close to each other due to
limited measurement bandwidth and dispersion. These effects
are however contained in the simulation model in Sec. II. To
apply [1] with our simulation model, we use a simple peak
detection algorithm, where peaks need to be at least 1 m away
from each other and the amplitude must be higher than 5 · 10−5

times the amplitude of the sent signal.
The algorithm which is presented in [1] contains a con-

sistency check for systematically created candidate topologies
which is not further explained. If all reflections were resolved
perfectly, the consistency check could simply be done by
comparing simulated reflections of a candidate topology to the
measured reflections. If all simulated reflections are contained
in the measured reflections, the candidate topology can be
considered as consistent. However, if not all reflections can be
resolved due to the more realistic FDR simulation of Sec. II,
the algorithm of [1] would mostly fail to reconstruct any
network, as valid candidate topologies are likely to be rejected
by the consistency check.

To be able to compare our method to [1], we introduce a
consistency quota q (ratio of the number of consistent reflec-
tions and the number of simulated reflections). A measured
and a simulated reflection are considered consistent, if their
distance is less than 1 m. Only if the consistency quota of a
candidate topology is lower than a certain value, the topology
is rejected by the consistency check. Similarly to [1], we
terminate the algorithm if there are more than 300 candidate
topologies and return all candidates as the result.

As all consistent candidate topologies are considered as
valid, the result of the algorithm from [1] might be ambiguous.
For that reason we use the scores ᾱc, α̃c, ᾱs, and α̃s to evaluate
the results. While ᾱc denotes the percentage of completely
reconstructed networks taking the average of all αc if a
reconstruction was ambiguous, α̃c considers the best αc of
all ambiguous reconstructions. To achieve α̃c in practice, an
algorithm to perfectly choose the topology would be still
necessary. ᾱs denotes the similarity between the original
and the reconstructed network taking the mean of all result
topologies of a test case, α̃s only considers that result topology
of a test case which has the highest αs.

In our first experiment we performed simulations with a
bandwidth of 500 MHz in the simulated FDR measurement.
The simulations were performed on networks consisting of 6
nodes with K = 8192 equidistant measurement points in the
simulated FDR measurement. For the algorithm of [1] we tried
all combinations of q ∈ {10 %, 15 %, ..., 95 %} and the max-
imum reflection distance rmax ∈ {400 m, 500 m, ..., 1000 m}.
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TABLE I
COMPARISON OF THE PROPOSED ALGORITHM AND THE METHOD OF [1]

proposed algorithm algorithm from [1]

αs αc α̃s α̃c ᾱs ᾱc

[%] [%] [%] [%] [%] [%]

84.5 71.3 74.8 34.7 36.4 0.06

TABLE II
SIMULATION RESULTS FOR DIFFERENT NOISE LEVELS AND BANDWIDTHS

IN THE SIMULATED MEASUREMENT

BW 1 GHz 500 MHz 250 MHz

αs αc αs αc αs αc

SNR [%] [%] [%] [%] [%] [%]

24 dB 67.9 44.1 77.8 58.0 73.4 55.3
30 dB 84.1 68.8 83.0 68.2 75.0 59.5

∞ 85.7 72.7 84.5 71.3 75.4 60.7

TABLE III
SIMULATION RESULTS FOR DIFFERENT NETWORK SIZES

Network size 6 nodes 8 nodes

αs [%] αc [%] αs [%] αc [%]

84.5 71.3 68.4 39.5

The highest sum of α̃s and α̃c was achieved for q = 20 %
and rmax = 900 m, for which we show the results in Table I,
alongside with the results of the proposed algorithm.

The introduction of the consistency quota into the algorithm
of [1] on the one hand allows us to apply it to a more
realistic reflectometry model, but on the other hand weakens
the consistency check. This leads to a higher ambiguity of the
reconstruction results. The high ambiguity can be seen by the
ratio between the scores with perfect selection of the best result
topology (α̃s and α̃c) and the scores that consider all result
topologies (ᾱs and ᾱc). Compared to the scores α̃s and α̃c the
proposed algorithm shows significantly better results in both
scores αs and αc. Even if a perfect choice of the ambiguously
reconstructed topologies would be possible the reconstruction
rate of proposed approach is almost 10% higher than for [1].

This can be explained by the formulation of the cost
function in eq. 9. The proposed method does not require a
peak detection step and is hence more robust to overlapping
reflections. Further the continuous nature of eq. 9 is beneficial
for the algorithm in Fig. 4.

In our second experiment we performed simulations with
different bandwidths and noise levels to evaluate the influence
of these factors. The bandwidth BW ranges from 250 MHz to
1 GHz. We simulate networks for a SNR of 24 dB and 30 dB.
For comparison, we also performed simulations for each
bandwidth without noise. The simulations were performed on
networks consisting of 6 nodes with K = 8192 equidistant
measurement points in the simulated FDR measurement.

The results of the second experiment are shown in Table II.
As it is to be expected the scores for a given bandwidth
are decreasing for increasing noise. It can be observed that
increasing the bandwidth beyond 500 MHz does not result in
a significant improvement of the reconstruction rate. Though
the resolution of the FDR measurement increases with the

bandwidth, the attenuation of the cable is strong for high
frequencies, such that almost no additional information can
be obtained.

In our third experiment we performed simulations with
different network sizes to evaluate the effect on the recon-
struction. Each simulation was performed with a measurement
bandwidth of 500 MHz, 8192 measurement points and without
noise. We performed simulations with network sizes of 6 and 8
nodes. The results are shown in Table III. The network size has
a strong effect on the percentage of completely reconstructed
networks. The reason is that for a network with more nodes,
the reflections are more likely to be unresolvable, especially
for cables far from the measurement node (cf. far reflections
in Fig. 1). However, αs indicates that most cables near to
the measurement node were reconstructed, even for a large
network.

VI. SUMMARY

A novel approach for the inference of a passive wired
networks topology is proposed in this work. In contrast to
existing solutions, dispersive cables and limited resolution
were considered. Moreover, the network reconstruction is
stated as a continuous problem. An iterative heuristic to solve
the reconstruction problem is presented. Experiments based
on simulated reflection measurements show that the proposed
algorithm outperforms existing solutions by almost 10%.
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