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Abstract—We address the problem of decomposing several
consecutive sparse signals, such as audio time frames or image
patches. A typical approach is to process each signal sequentially
and independently, with an arbitrary sparsity level fixed for each
signal. Here, we propose to process several frames simultaneously,
allowing for more flexible sparsity patterns to be considered. We
propose a multivariate sparse coding approach, where sparsity
is enforced on average across several frames. We propose a
Multivariate Iterative Hard Thresholding to solve this problem.
The usefulness of the proposed approach is demonstrated on
audio coding and denoising tasks. Experiments show that the
proposed approach leads to better results when the signal
contains both transients and tonal components.

I. INTRODUCTION

Sparse decomposition has proved to be an efficient tool
for many signal processing applications such as coding, com-
pression, denoising, inpainting and source separation [1]–[5].
Most natural signals can be efficiently represented as a linear
combination of a few basis signals called “atoms”, taken from
an overcomplete dictionary. Finding a sparse decomposition
of signal is known to be an NP-hard problem [6], but a range
of algorithms have been proposed in the literature, such as
Basis Pursuit [7], Matching Pursuit [8], Orthogonal Matching
Pursuit [9] and Iterative Hard Thresholding (IHT) [10], [11].

Many applications require to compute the sparse decom-
position of many successive signals, e.g. short-time frames
in audio, or small 2D patches in image processing. Usually,
each frame is processed independently and sequentially, with
a sparsity constraint on each frame (see e.g. [3], [4], [12],
[13]). One of the main difficulties in sparse decomposition
problems is to find an appropriate sparsity level for the signal,
i.e. an appropriate number of non-zero atoms [13]. In audio
for example, the sparsity level depends on the nature, and the
number of sources. Tonal sources present only a few frequency
components, i.e. sparsity over frequencies. Transients or on-
sets, on the other hand, present a dense frequency content,
very localized in time, thus sparsity over time [2]. One way
to address the diversity of sparsity levels (i.e. very sparse and
very dense frames) is to use hybrid representations: a union
of two dictionaries can be used, one adapted to tonals and
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one to transients [1], [2]. However, this results in very large
dictionaries, and a much higher computational cost. Instead,
we propose to decompose several frames simultaneously on
the same dictionary, in order to allow us to enforce sparsity
across frames, as well as sparsity of each frame.

Multiple Measurement Vectors (MMV) algorithms [14],
[15], also called simultaneous sparse coding [16] or joint
sparse coding algorithms [17], process several vectors at the
same time, assuming that each vector is a measurement of the
same signal. Non-local sparse models [18], or collaborative
filtering approaches [19] also proposed to code several image
patches simultaneously. However these approaches only make
use of similar signals, assuming that they share the same
support set. Matrix factorization methods, such as Dictionary
learning or Non-negative Matrix Factorization (NMF) consider
several frames simultaneously. However the sparse coding
step in dictionary learning is usually computed frame by
frame, assuming a fixed sparsity level for each frame [3],
[12]. NMF algorithms process several non-negative vectors
simultaneously using multiplicative update rules. This allows
for more flexible sparsity patterns to be enforced, such as spar-
sity over the whole activation matrix (instead of sparsity on
each column) [20], [21]. Moreover, this multiframe approach
allows for structure between frames to be enforced, such as
smoothness constraints [21].

In this paper, we propose to extend this idea to the multiple
sparse signal decomposition problem. We propose a multi-
variate sparse decomposition framework, in order to decom-
pose several frames simultaneously over the same dictionary.
We then introduce a simple sparsity inducing matrix norm
that counts the number of non-zero coefficients over several
frames. We extend the classic IHT algorithm to the multivari-
ate case, and introduce a masking matrix in order to respect
the stopping criterion of each frame. The proposed algorithm
processes several frames simultaneously, and chooses the best
coefficients across several frames, instead of the best coeffi-
cients in each frame. This allows for more flexible sparsity
patterns to be enforced, e.g. sparsity over frequencies (tonals)
or sparsity over time (transients). We demonstrate how this
framework is more adapted to the particular time-frequency
structure of audio signals. Experimental results show that the
proposed approach leads to better performance in terms of
audio coding and denoising, especially for signals containing
both tonals and transients.
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The paper is organized as follows: in Section II we present
the baseline approach, and the classic IHT algorithm. In
Section III we propose a multivariate sparse coding frame-
work, that allows to process several frames simultaneously.
We later propose a simple sparsity-inducing matrix norm that
extends the `0 pseudo-norm to matrices, and a multivariate
IHT algorithm to solve the multivariate sparse decomposition
problem. Experiments are shown in Section IV, before the
conclusion is drawn.

II. BASELINE APPROACH

We consider a signal y, that can be decomposed as T vectors
{yt}t=1...T each of size N , typically short-time frames in
audio or 2D patches in image. In this paper we will simply
refer to {yt}t=1...T as frames. A typical sparse decomposition
algorithm assumes that each frame yt ∈ RN can be sparsely
represented in an overcomplete dictionary D ∈ RN×M (N <
M ). The sparse decomposition problem can be written as:

x̂t = argmin
xt

‖yt −Dxt‖22, s.t. ‖xt‖0 < K ∀t = 1, ..., T

(1)
where xt ∈ RM is the sparse coefficient vector associated
to frame t, ‖xt‖0 is the pseudo-norm that counts number of
non-zero elements in xt, and K is the a-priori sparsity level.

The IHT algorithm [10], [11] is a simple iterative algo-
rithm that alternates between a gradient descent step, and
a hard thresholding. The gradient descent ensures that the
reconstructed signal fits the observation. The hard threshold-
ing keeps the K largest coefficients at each iteration, and
thresholds the remainings to zero, thus ensuring sparsity of the
solution. The algorithm stops once it has reached a maximum
number of iterations, or once a desired reconstruction error is
reached.

A typical approach to deal with multiple frames is to process
them one by one, see e.g. [3], [4], [12], [13]. IHT for multiple
vectors is presented in Algorithm 1, where µ is the gradient
descent step size, and ε is the desired reconstruction error.

Algorithm 1 IHT for multiple signals

Require: {yt}t=1...T , D, ε,K, µ
for t = 1, ..., T do

initialize: x0t = 0
while ‖yt −Dxnt ‖22 > ε do

xn+1
t = xnt + µDT (yt −Dxnt ) . Gradient descent
xn+1
t ← HK(xn+1

t ) . Hard Thresholding
return {xt}t=1..T

IHT is a simple, efficient algorithm with theoretical conver-
gence guarantees for K-sparse signals [10], [11]. In practice
however, the sparsity level might vary greatly between con-
secutive frames [13]. In audio, tonal signals exhibit localized
energy around a few frequencies, which leads to an efficient
sparse decomposition in a time-frequency dictionary such as a
Gabor or DCT dictionary. However the sparsity level depends
on the number of harmonics, or the number of sources. Tran-
sient components, on the other hand, have a dense frequency

spectrum, very localized in time. In this case enforcing sparsity
within a frame might not be an appropriate assumption. One
should instead enforce sparsity over time, i.e. across consecu-
tive time frames. Enforcing structure across frames requires a
procedure where frames are processed simultaneously, instead
of one by one.

In the next section we propose to reformulate the sparse
decomposition problem (1), in order to process several frames
simultaneously. We show how this allows us to enforce more
flexible sparsity patterns, such as sparsity over time as well as
sparsity over frequencies.

III. MULTIVARIATE SPARSE CODING

Instead of solving (1) successively for each time frame yt,
we propose to reformulate the problem in order to process
several frames simultaneously. We define Y = [y1, ..., yT ] ∈
RN×T as the matrix containing T adjacent frames concate-
nated altogether, and X = [x1, ..., xT ] ∈ RM×T the cor-
responding sparse activation matrix. The multivariate sparse
coding problem can then be formulated as:

argmin
X

‖Y −DX‖2F , s.t. Ω(X) < Ktot, (2)

where ‖.‖F is the Frobenius norm, Ω is a sparsity-inducing
norm or pseudo-norm, and Ktot is the overall sparsity level
of X .

A. Related works

The multivariate formulation in (2) has already been used in
MMV algorithms [14], [15], simultaneous sparse coding [16]
or joint sparse coding [17]. However, these algorithms assume
that each column of X shares the same support, i.e. that entire
rows of X should be set to zero. Some matrix-norms used are
then non-zero rows counting norms, such as the `0,∞ pseudo-
norm [15], [16], [18]:

Ω(X) = ‖X‖0,∞ ,
M∑

m=1

‖Xm‖0∞, (3)

with Xm being the m-th row of X .
The multivariate sparse coding approach (2) also looks

similar to the popular sparse NMF approach for non-negative
data [20], [22]. In [20] for example the sparsity inducing norm
was chosen as:

Ω(X) =
∑
m,t

|Xm,t|, (4)

where X is a non-negative activation matrix, thus enforcing
sparsity on the whole activation matrix instead of sparsity on
each column. Sparse NMF demonstrated high performance
on many audio reconstruction tasks [21], [23]–[25], when
working on non-negative data. Moreover, processing several
frames simultaneously allows to enforce structure between
frames, such as smoothness over time [21]. Here we propose
to extend this idea to sparse data that are not necessarily non-
negative.
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B. Proposed approach

To illustrate the usefulness of the multivariate approach (2),
we propose a simple sparsity inducing matrix norm. We define
‖X‖0 , ‖vec(X)‖0, the simple “entrywise” matrix norm,
extending the `0 pseudo-norm to matrices. We propose to solve
(2), with Ω(X) = ‖X‖0:

argmin
X

‖Y −DX‖2F , s.t. ‖X‖0 < Ktot. (5)

This formulation thus enforces sparsity on the whole activation
matrix X , instead of sparsity on each column (i.e. each frame).
Here, we refer to the new sparsity prior ‖X‖0 < Ktot as a
global sparsity prior. This sparsity prior can also be seen as
enforcing sparsity on average across several frames, instead of
fixing an arbitrary sparsity level on each frame. Consequently,
this approach allows for more “flexible” sparsity patterns, such
as sparsity over time as well as sparsity over frequencies. It
can also potentially efficiently represent very sparse frames,
along with dense frames, and different sparsity patterns such
as row sparsity and column sparsity.

We propose to solve (5) by reformulating the classic IHT
algorithm into a multivariate way. The gradient descent step
can easily be reformulated in its vectorized form as:

Xn+1 = Xn + µDT (Y −DXn). (6)

The hard thresholding can then be performed by simply
keeping the Ktot highest elements of X overall. Consequently,
the algorithm chooses the best Ktot coefficients across multi-
ple frames, instead of enforcing K elements in each frame.
In other words, this means that frames that have a dense
representation could “borrow” some coefficients from more
sparse frames.

One shortcoming of a batch processing is that every frame is
processed with the same number of iteration, and the stopping
criterion ‖yt−Dxnt ‖22 > ε cannot be readily applied. This is of
utmost importance in the denoising case, since the condition
‖yt−Dxnt ‖22 > ε reflects our knowledge about the noise level,
and can lead to artifacts when it is not respected [26]. In order
to deal with the stopping criterion for each frame t, we add
a masking matrix M ∈ {0, 1}M×T in the gradient descent
step. M is initialized to the all-ones matrix 1M×T and each
column t is set to zero once frame t reaches the stopping
criterion. This ensures that frame t stops being updated once
it reaches the stopping criterion.

The proposed algorithm is described in Algorithm 2, where
we have defined Hglobal

Ktot
as the hard thresholding operator that

keeps the Ktot largest components of X overall, Xt is the t-th
column of X , and ⊗ is the Hadamard product. The proposed
algorithm is thus a batch version of the classic IHT algorithm.
Note that batch versions of other sparse coding algorithms
have already been proposed to solve (1), such as Batch OMP
[27] and Batch FISTA [28].

Figure 1 shows how the proposed approach performs on
an audio coding task. We decomposed a glockenspiel signal,
containing both tonals and transients. IHT provides a good
reconstruction for tonals, but very poor reconstruction of

Algorithm 2 Multivariate IHT with global sparsity

Require: Y,D, ε,Ktot, µ,M = 1M×T
initialize: X0 = 0, n = 0
while ∃ t s.t. ‖Yt −DXn

t ‖22 > ε do
Xn+1 = Xn + µM⊗

(
DT (Y −DXn)

)
Xn+1 ← Hglobal

Ktot
(Xn+1) . Global Hard Thresholding

for t = 1,...,T do . Check stopping criterion
if ‖Yt −DXn+1

t ‖22 ≤ ε then
Mt ← 0M . Update mask

return X

transients. Multivariate IHT with global sparsity (i.e. sparsity
on the overall activation matrix) achieves good reconstruction
performance on both tonals and transients, with an overall
improvement of more than 10 dB. Both algorithms were
computed with the same number of non-zero coefficients
overall, i.e. same compression performance. More experiments
are presented in Section IV.
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Fig. 1: Sparse activation matrix of T = 280 frames from a
glockenspiel signal, containing both tonals and transients. Top:
IHT (SNR = 21.7 dB). Bottom: Multivariate IHT with global
sparsity (SNR = 31.8 dB). Both representations have exactly
8960 non-zero coefficients overall. The proposed approach
manages to recover tonal components as well as transients.
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IV. EXPERIMENTS

In this section we present experiments on audio coding
and denoising tasks. The test dataset consists of 10 music
and 10 speech signals, sampled at 16 kHz. The music dataset
contains both tonal signals, transients (e.g. drums), and mix-
tures of both. The speech dataset contains both male and
female speech. Each signal was decomposed into T = 624
overlapping time frames of size N = 256, with 50% overlap.
We used a twice-redundant DCT dictionary of M = 512
atoms. The gradient descent step size µ was fixed and chosen
as µ = 1/λmax(DTD), where λmax(DTD) is the highest
singular value of DTD. As suggested in [29], [30], we
implemented each algorithm using sparsity relaxation: the
sparsity level was initialized to 1, and increased periodically
after a few iterations until the maximum sparsity level was
reached. Experiments showed that 10 iterations were enough
for the gradient descent step to converge, so we increased the
sparsity level every 10 iterations.

A. Audio coding experiment

We first show the result on an audio coding task. The coding
performance is measured as the SNR of the reconstructed
signal, as a function of the number of non-zero coefficients.
The percentage of non-zero coefficients is simply computed
as 100 × ‖X‖0/(M × T ). We compared the IHT algorithm
with the proposed multivariate IHT with global sparsity (Alg.
2). Both algorithms were computed so that each representation
had exactly the same number of non-zero coefficients overall,
and an accuracy of ε = 10−4. The results computed from
1% to 10% of non-zero coefficients are presented in Figure
2, for music and speech signals respectively. The proposed
algorithm shows an overall improvement of 2 dB on music
signals, and up to 5 dB of improvement on speech signals. This
shows that the proposed approach leads to much better quality
of reconstructed signals for the same number of coefficients,
thus improving coding performance. Informal listening tests
also revealed that the reconstructed audio was of much better
perceptual quality, mostly because transient components and
speech onsets were more efficiently coded.

B. Denoising experiment

We evaluated the denoising performance of both algorithms,
on signals corrupted by additive zero-mean Gaussian noise.
The algorithms were computed in the same way as with
the coding experiment, except that here we fix the stopping
criterion ε as ε = kσ2, with σ2 being the power of the noise
and k a constant set arbitrarily. ε is set proportional to the noise
level in order to avoid noise components from being picked
up during the reconstruction process (see e.g. [3], [18], [31]).
The maximum sparsity level was chosen as K = 32 for the
IHT (i.e. 32 atoms per frame), or Ktot = 32 × T for the
global sparsity, thus enforcing the same number of non-zero
coefficients on average. The results are shown is Figure 3. The
proposed algorithm shows a slight improvement compared to
the classic IHT, with an improvement of 0.2 dB overall, and
up to 3 dB for speech signals in high SNR environments.
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Fig. 2: Audio coding experiment. SNR of reconstructed signal,
as a function of the percentage of non-zero coefficients. Top:
music signals. Bottom: speech signals.

C. Computational time

We compare empirically the computational time of IHT
and the proposed multivariate IHT with global sparsity. The
algorithms were implemented in Matlab, and the average CPU
time to process one second of signal is reported in Table I.

Multivariate IHT
IHT with global sparsity

CPU time (s) 20.8 2.0

TABLE I: Average CPU time to process 1s of signal.

The vectorized gradient descent in Alg. 2 leads to a much
faster implementation in Matlab, since it avoids an expensive
iteration across fames.

V. CONCLUSION

In this paper, we proposed a multivariate sparse decomposi-
tion framework that allows to process several frames simulta-
neously. We proposed a simple sparsity-inducing matrix norm,
and a new Multivariate IHT algorithm. We proposed to extend
the hard thresholding operator to matrices, in order to enforce
sparsity on the whole activation matrix, instead of sparsity of
each frame. This approach allows us to efficiently represent
signals with very different sparsity patterns, such as tonals
and transients. Experiments showed a significant improvement
compared to the classic IHT in terms of audio coding, and
moderate improvement in terms of audio denoising. Future
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Fig. 3: Audio denoising experiment. SNR improvement of the
reconstructed signal, as a function of the input SNR. Top:
music signals. Bottom: speech signals.

work will evaluate to proposed approach to dictionary learning
tasks, and try to extend the proposed framework to more
complex sparsity-inducing matrix norm.
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