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Abstract—In this paper, we study an Electroencephalography
(EEG) based biometric authentication system with privacy pro-
tection. We use motor imagery EEG, recorded using a wearable
wireless device, as our biometric modality. To obtain EEG-based
authentication keys we employ the fuzzy-commitment like scheme
with soft-information at the decoder, see Ignatenko and Willems
[2014]. In this work we study the effect of multi-level quantization
together with binary encoding of EEG biometric at the encoder
on the system performance, when EEG feature vectors have
limited length. We demonstrate our findings on an experimental
EEG dataset of ten healthy subjects.

I. INTRODUCTION

Access control systems based on biometric authentication
gain popularity, since unlike passwords biometrics have strong
bond with their user. Traditional biometric systems are based
on voice, face, iris or fingerprint modalities. These biomet-
ric modalities, however, suffer from the problem that they
can be acquired relatively easy and replicated by attackers,
aiming at impersonating legitimate users. Therefore recently
biometric research focused on finding alternative modalities
that incorporate liveness detection property and are hard to
obtain without a cooperating user. Physiological signals such
as electroencephalography (EEQG), electrocardiography (ECG),
etc. became potential candidates for such biometric modalities.

Application of EEG signals in biometric systems is a rela-
tively new research field that started in this century with initial
work of Paranjape et al. [1]. Research in this field was mostly
focused on assessing suitability of different EEG modalities
and signal analysis methods to be used for authentication. In
[1] the use of EEG patterns specific for eyes open/eyes closed
conditions was explored. There, by applying autoregressive
(AR) modeling on 8 channel EEG data and discriminant
function analysis (DFA), classification accuracy over 80% was
achieved. Palaniappan et al. [2] used EEG patterns generated
by visual stimulation - a modality called Visual Evoked
Potential (VEP); while Marcel and Millan [3] used EEG
patterns associated with mental task stimulation. Combining
AR modeling with kNN and Gaussian mixture modeling with
MAP detector, respectively, they could achieve classification
accuracy above 90%. Later works explored potential limita-
tions of EEG biometrics. Brigham et al. [4] tested performance
of the EEG biometric system over time. There EEG signals
for imagery tasks were recorded for six subjects over four
days. The EEG biometric system was created based on the AR
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modeling and support vector machines (SVM). Performance of
the resulting system varied from 78.6% to 99.8%, showcasing
difficulty to build a robust EEG-based system. Abdullah et al.
[5] explored the effect of minimizing the number of channels
on the classification performance. When using 2 to 4 channels
on the eyes open/eyes closed modality, the highest accuracy
achieved was 81%. Recently, Campisi et al. [6] proposed a
new method, called Eigenbrain, that used VEP to realize an
EEG-based authentication system. There the EEG signals were
modeled using principal component analysis (PCA) applied to
the EEG power spectrum density (PSD) over 19 electrodes,
and classification was done using linear discriminant analysis
(LDA). The achieved identification rate for a database of 60
participants was 99%, while equal error rate (EER) was 15%.

A vital aspect that has to be addresses in biometric authen-
tication system design is biometric privacy. Since biometrics
are unique identifiers of human beings, they cannot be revoked
if compromised. Moreover, physiological signals also contain
sensitive medical information. To address these problems, bio-
metric cryptosystems based on key-binding and key-generation
are often used, see e.g. [7] and [8]. Studies of EEG biometrics
protection are however quite limited. Early work of Maiorana
et al. [9] presented application of turbo codes for EEG secret
generation. Their subsequent work [10] presented a case study
on 40 subjects using eyes closed EEG patterns recorded over
19 electrodes. They achieved False Rejection Rate (FRR) of
9.5% and False Acceptance Rate (FAR) of 6.4% with 39 bits
security, using turbo code of rate 1/15.

Our Contribution: We concentrate on the EEG-based au-
thentication system with privacy protection. We make use of
fuzzy commitment with multi-level quantization at the encoder
and soft information at the decoder [11]. One of the problems
with physiological signals is that the size of the corresponding
biometric feature vectors with independent components is rel-
atively small to apply error-correcting codes (EEC) that are es-
sential building blocks of biometric cryptosystems. Therefore
we study the effect of using encoding techniques that introduce
redundancy in the enrollment biometrics. To test our system,
we use EEG data corresponding to motor imaginary activities.
Our EEG database contains data recorded in multiple sessions
during a week time-period using the wearable wireless EEG
headset designed at imec. Thus our setting corresponds to the
realistic authentication scenario that takes into account EEG
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time variability as well as practical system usability.

II. BIOMETRIC PRIVACY-PRESERVING SYSTEMS

Here we first present generic construction for biometric sys-
tems that creates unique reproducible secret keys for biometric
observations. Such secret keys and the corresponding systems
lay the basis for privacy-preserving biometric authentication.
In these systems during enrollment, biometric sequence is
observed and a secret key together with the helper data are pro-
duced. During authentication, a noisy observation of biometric
is taken and the corresponding secret key is estimated based
on this biometric observation and the helper data. Finally,
biometric secret keys are hashed using cryptographic one-way
functions and authentication decision is made by comparing
the hashed versions of the biometric secret keys produced
during enrollment and authentication phases.

Further we present a fuzzy commitment scheme, which is
a particular realization of such generic biometric system, and
its adaptation for continuous biometric sources.

A. Generic Biometric System Based on Key-Binding

s M s
— encoder decoder —

XN YN
Fig. 1. Model for a biometric system based on key-binding.
N

Consider first a Gaussian biometric source. Let
(v1,22,...,2x) and yN = (y1,¥2,...,yn) be enrollment
and authentication biometric sequences, respectively, com-
posed of N real-valued components. These sequences are
produced by a Gaussian biometric source {G,(z,y),z €
R,y € R}, and thus the probability density corresponding
to sequence pairs (X, Y") is given by!

N
11 Go(@n yn), where (1)

n=1

G,(z,9) L (9”2*92‘2”9)
YY) = ————exp| ~————5— | »

Y 2my/1 — p2 P 2(1 —p?)

for z € R,y € R and correlation coefficient |p| < 1.

Here the pairs {(X,,Y,),n = 1,2,..., N} are independent
of each other and identically distributed (i.i.d.). The quality of
biometric observations is characterized by the signal-to-noise
ratio (SNR) expressed in terms of correlation coefficient p as

SNR = p?/(1 — p?). )

pXNYN(xNv yN) =

Consider now a biometric system based on key-binding, see
Fig. 1. During enrollment, a secret key S € {1,2,..., |S|} is
chosen uniformly at random and independently of biometrics:

Pr{S =s}=1/|S|, forall s € {L,2,...,|S]}. (3)

An encoder observes the biometric enrollment sequence XV
and secret S, and produces the helper data M € {1,...,|M|}
as M = e(S, X*), where e(-,-) is the encoder mapping.

IScaling can always be applied to obtain unit variance for X and Y.
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The helper data produced by the encoder are communicated
to the decoder and assumed to be public. The decoder in its
turn also observes the biometric authentication sequence YN,
and forms an estimate S € {1,2,...,|S|} of the chosen secret
based on available information, i.e., S = d(M,Y"™), where
d(-,-) is the decoder mapping.

The goal of these biometric systems is to reliably share
a secret key such that the amount of information the helper
data provides about the secret (secrecy leakage) is negligible,
while amount of information the helper data provides about the
biometric enrollment sequence (privacy leakage) is minimal.
We define secret-key and privacy-leakage rate pairs (R, L;)
with Rs > 0 to be achievable if for all 6 > 0 and all N large
enough, there exist encoders and decoders such that

Pr{5 #S} < 4, (reliability)
log, |S|/N > Rs— 9, (secret-key rate)
I(S;M)/N < 4, (secrecy)

I(XN;M)/N < L, + 6. (privacy) 4)

In [12] the region R, of all achievable secret-key and privacy-
leakage rate pairs for key-binding for Gaussian biometric
sources was characterized and the corresponding result is
stated in the following theorem.

Theorem 1: [Key-binding based on Gaussian sources, [12]]

1 1
R = RS’7L OSRegfl — 5 1 5 |
P {( < p) £ 9 082 <ap2+1—p2>
1 ap® +1—p?
Lp2210g2<a )
for 0 < o < 1}. 5)

Related to this region, the relation between a given privacy
leakage and the corresponding maximum achievable secret-
key rate is given by the following rate-leakage function

1 (2250 — 1)
(6)

The secrecy capacity of such biometric system is given by

max

R,(L
p( ) (RvaP)ERP

lim R,(L,) = %log2 (1+SNR) =I1(X;Y). (7)

L,—00
B. Fuzzy Commitment Based Schemes

A fuzzy commitment scheme [7] is a realization of generic
biometric system with key-binding designed for binary biomet-
ric sequences. In fuzzy commitment during the enrollment a
uniformly selected binary secret key S% € {0, 1} is encoded
into a codeword CV using an error-correcting code of rate
R. To produce the helper data, the codeword is masked with
the biometric enrollment sequence X € {0,1}", thus the
encoding function becomes

MY =enc(S¥) s XV =N ¢ xV, (8)

where @ denotes a modulo-2 addition. During authentication
the decoder observes the authentication sequence Y &
{0,1}" and subtracts it modulo-2 from the helper data. The
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resulting codeword corrupted with biometric measurement
noise, given by XV @Y™ is decoded to the closest codeword
and subsequently to the secret key estimate S. Thus the
decoding function becomes

SE = dec(MN @ YN) = dec(CN @ (XN aYM)). (9

Achievable region for fuzzy commitment scheme in case
of a (virtual) memoryless binary symmetric channel (BSC)
between enrollment and authentication measurements and uni-
formly distributed X was characterized in e.g. [13]:

RFC:{(RS;Lp) OSngl_h(p)a
L, >1-R,,

for 0 < p <1/2}, (10)

where p is a crossover probability of the BSC and h(-) is a
binary entropy function: h(p) £ —plogy p—(1—p) logs (1—p).

sK K
Enc Dec

Fig. 2. Modified fuzzy commitment with quantization at the encoder only.

Performance of fuzzy commitment schemes is optimal for
rates at the capacity, i.e., Rs = 1 — h(p), thus requiring
capacity achieving codes for their implementation. Note that,
in general, biometric sequences are non-binary, and therefore,
to apply fuzzy commitment, quantization has to be done at
both encoder and decoder side. However, quantization at the
decoder results in the performance loss, since decoding is
done using hard decision. Therefore in this work we consider
a modified version of fuzzy commitment, see Fig. 2, where
quantization is only done at the encoder [11]. Moreover, we
apply multi-level quantization at the encoder [14] in order to
be close to the system secrecy capacity I(X;Y).

III. CODING FOR EEG BIOMETRICS

In this section we present the building blocks for our EEG-
based authentication system depicted in Fig. 2.

A. Modeling EEG

Consider EEG data signals corresponding to two motor
imaginary (MI) activities acquired using C' channels. The EEG
measurements are filtered using common average reference
(CAR) filter to remove average potential of all electrodes, and
are further normalized, resulting into our raw EEG data.

In oder to obtain enrollment and authentication EEG se-
quences, we combine information from raw EEG data and
EEG data transformed using common spatial pattern (CSP)
filter. CSP is a method widely applied in motor imagery based
brain-computer interface (BCI) systems [15]. The method
transforms the multi-channel EEG data into a low-dimensional
subspace, which maximizes the difference between two differ-
ent MI activities. Since in biometric systems the goal is people
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recognition, we consider three different CSP transformations
in order to obtain the most discriminating information, i.e.,

o PCSP: CSP generated based on the data of each subject

separately. It relates to individual MI activities;

o GCSP: CSP generated based on the data coming from all

subjects together. It relates to generic MI activities;

o SCSP: CSP defined as GCSP-PCSP. This transformation
should capture individual variations in MI activities.
Both CSP-filtered and raw EEG data for each of C channels
are further modeled as autoregressive (AR) process of order
O. The resulting feature vectors are represented by reflection

coefficients (RC) estimated using Burg’s method [16].

Note that the resulting feature vectors are typically high
dimensional and correlated. Therefore, we apply independent
component analysis (ICA) followed by Fisher discriminant
analysis (FDA) to obtain biometric sequences composed of
independent discriminating components.

B. Multi-Level Quantization

Recall that fuzzy commitment requires uniform biometric
input distribution to guarantee optimal performance. Therefore
in this work we consider equiprobable quantization scheme,
proposed in [14]. Consider a zero-mean unit-variance Gaussian
distribution. The equiprobable quantizer @) ;(-) with quantiza-
tion level log, J for this Gaussian distribution is given by

QJ(x) = j7

) 22 )
where g; is such that  [* \/%e*Tdm =L

for gji—1 <X < qj,
(In

The quantization level log, J is selected such that the resulting
recognition performance achieved with quantized data remains
close to the one achieved with original data.

C. Binary Encoding

After the quantization step, we obtain a quantization index
that has to be further encoded into a binary string. We consider
two types of encodings: Gray and Gray-unary encodings.

Gray encoding ensures that two consecutive integers are as-
signed to the codewords that differ by only one bit. In general,
the Hamming distance between the codewords of the Gray
code is not equivalent to the distance in the integer domain.
Gray-unary encoding represents an integer 7,0 < 7 < J, as
J — j zeros followed by j ones. Just like Gray encoding two
adjacent codewords differ in one bit, but it does preserve the
integer distance. Gray-unary encoding, however, introduces
redundancy in the codewords.

D. Error-Correction and Log-Likelihood Ratio

Consider now our modified fuzzy commitment scheme with
soft input at the decoder. The encoder encodes a secret key
SK using a turbo-code of rate R. Moreover, it observes
biometric enrollment sequence X” and quantizes its each
component X,,n = 1,2,...,N into a sequence X;Z =
(Xn1,Xn2,...,Xn,7), where J takes on a value of log, J
or J for Gray and Gray-unary encoding, respectively. The
helper data is then formed as CN7 @ X7 The decoder ob-
serves the helper data M7 and the authentication sequence
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YN and uses an BCJR decoding [17] to reconstruct CVY .

The decoding step requires log-likelihood ratios (LLR).
Consider a Gray-unary encoding. Given helper data symbol

my; and observed biometric symbol y,, LLR is given by

Pr(mn iy yn|cn7 = O)
LLR, ;=1 : / :
O B (i ulen = 1)

Using Bayes rule and the fact that biometric observations are
independent of the secrets and thus codewords, the probability
Pr(my, i, Yn|cn,s = 1) can be rewritten as

12)

Pr(mun,i, ynlcn: = 1)
=Pr(mpilcn; = 1) Pr(yn|mni, cni = 1)
=Pr(z,; ® lcn: = 1) Pr(ynlz, ;) = Pr(yn, 2, ;),(13)

and we need to consider probability of z, ;, = 0, if m,,; =
land z,; = 1, if m,; = 0. Note that an = 0 implies
that x,, g’ qj+1—i,» where ¢yy1—; is a quantization boundary.
Therefore, we can write

Pr(zy,,; =0lyn) =

qi+1—1

Pr(x, < qjyr1-ilyn)
_ 2
(xpy,J)dx

1
Nz R (‘ 21— %)

=1-Q; <QJ+1Ii_—pzy7l) ’

where Qf(-) is a Q-function. Combining (12)-(14) and anal-
ogous expressions for Pr(my, ;, yn|cn; = 0) and Pr(x,; =
1]yn), LLRs can be written as

_ QI41-i—PYn
L Qf( i )
qi+1—i—PYn
Qy (ﬁ,ﬁ )

For the Gray encoding, see [14], LLR are given by
LLR, ; = (—1)"n!

i—1 . . . —
1-% (=1)IH1Q; <q<2.7—1>2~’—1 Pyn)
Jj=1 N 1—p2
21 q pIJ (16)
i—1 . i1 (2j—1)27—i —PYn
> (F1)7HQy ( . V1-p2 >

IV. EXPERIMENTAL RESULTS

— 00

(14)

LLR, ;= (—1)"""log,

5)

-log,

A. Experimental Set-Up

EEG data was collected using imec’s wireless EEG headset
with 4 active dry EEG channels. The headset comprised 6
reusable silver-silver chloride (Ag/AgCl) electrodes (BIOPAC
EL120) with 4 measurement electrodes placed at positions Cz,
C3, C4 and Pz of the International 10-20 electrode positioning
system, and ground and reference electrodes positioned at
left and right mastoid, respectively. In-house developed EEG
data acquisition software with a tailor made application that
generate visual cues was used in the data collection.

The data acquisition protocol was approved by internal
review committee at imec. Ten participants (all males; mean
age: 30), recruited for the study, were healthy and had no
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history of neurological disorders. To avoid variability in pri-
mary cortex activation patterns, selected participants had right
side laterality. Participants were seated comfortably, facing the
computer screen about 1 meter away with both arms resting on
the table. All the experiments were performed under laboratory
conditions at constant room temperature and light ambiance.

During the user trials, EEG was recorded during left arm,
right arm, right foot and tongue movements. In our exper-
iments we only used the motor imaginary EEG recordings
corresponding to left and right arm movements. Before the
measurements were initiated, the participants were asked to
hold down the left "CONTROL’ key (using the left arm index
finger) and the number 0’ key on the number-pad (using the
right arm index finger). The measurements were divided into
4 sessions (S7 — Sy) with 100 trials each. Sessions S; and
So were recorded on the same day; S; was recorded one to
three days after S; and So; and S, was recorded one to three
days after Ss. The total period of recording process covered
about one week. Four different cues were generated in random
order. Each trial was divided into four segments: the cue phase,
the motor imagery phase, relax phase and activity phase. The
cue phase lasted 3 seconds, following the instruction. At the
end of cue phase, each participant was asked to imagine the
movement, marking the initiation of the motor imagery phase.
No physical movement was performed during this phase of the
trial. The motor imagery phase lasted 3 seconds followed by
a short period of relaxation. The final phase (activity phase)
was marked by a command asking the participant to perform
the activity as instructed during the cue phase of the trial. This
phase lasted 3 seconds, the end of which marked the end of
one trial. Each trial lasted 11 seconds.

B. EEG Feature Vector Parameter Selection

In our experiments we selected SCSP filter and band pass
filter to select [8,50] Hz of EEG rythm, see Fig. 3. We also
used 18 RC in AR process per each of 4 channels. The number
of coefficients was selected based on Akaike information crite-
rion (AIC). Moreover, 150 ICA components were used as input
to FDA. The resulting EEG biometric sequences, used as input
in the privacy-preserving system, had 9 components (limited
by the number of participants). The resulting performance of
EEG based authentication system without privacy protection
is shown in Fig. 4. The achieved average EER was 0.93%
calculated using 4-fold cross-validation.

PCSP/ED 26 25 28 24 27 24
PCSP/CD 23 26 23 18 24 16
GCSP/ED 27 25 27 24 26 25
GCSP/CD 23 25 23 18 24 16
SCSP/ED 27 24 27 23 26 23
SCSP/ICD 23 25 22 18 24 16

[1.30] [1.50] [4.30] [4,50) 8.30] 8,50]

Fig. 3. RC performance (EER) for different CSP filters and frequency ranges,
based on cosine (CD) and Eucledian distance (ED).
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Fig. 4. Distribution of the Eucleadian distance for genuine and imposter
comparisons in the unprotected system.

C. Experimental Results

The EEG sequences used as input into the privacy-
preserving system have only 9 components. We could have
used 150 ICA components, however, I[CA components have
low correlation, viz. p = 0.2, resulting in enrollment binary
sequences with too high error-rates. The components after
ICA/FDA transformation, on the other hand, have high corre-
lation, viz. p = 0.85, corresponding to SNR= 4dB, allowing
to extract 9 secret bits with negligible error probability.

Fig. 5 shows the simulation results for the EEG system
with Gray encoding, where the performance is evaluated using
word error rate (WER), an equivalent of FRR. The simulations
are done for different source quality (SNR) and quantization
levels. From these results, we see that only 4 bits secret keys
can be achieved with FRR=2.4% and FAR=87% using the
code rate of 1/5, corresponding to the privacy leakage of 0.8
bits per source symbol. Clearly we have two problems: on
one hand, the source quality is relatively low here and, on the
other hand, the length of the EEG sequences is too low to use
more complex codes or lower code rates.

Turbo code with 1/3, 8 states

100 = 100 -

Turbo code with 1/5, 8 states

Turbo code with 1/7, 8 states
100 e

WER in%
WER in%
WER in%

SNR (dB) SNR (dB) SNR (dB)

Fig. 5. Simulation results for the EEG-based authentication system with
privacy protection implemented using Gray encoding.

To overcome these problems, we use Gray-unary encoding.
This allows us to increase quantization level, which in turn
increases the error rate. However, since Gray-unary encoding
introduces redundancy, the overall error-rate of the resulting
EEG sequences does not increase. Redundancy, however, has
an effect that the secrecy leakage, L, becomes non-zero [13],
and thus the effective key size reduces. The performance
results for this setting are summarized in Table I. Here we
used a turbo code with 64 trellis states. We see that here we
can achieve FAR= 1.83% and FRR=1.875% with effective
key size of 21 bits and privacy leakage of 0.116 per source
symbol. Note that the secret key size reported there is higher
than secrecy capacity. This can be explained by the observation
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that the reported FRR is not negligible. Nevertheless, key size
estimates might still be optimistic, since privacy and secrecy
leakage estimates, see [13], are lower bounds.

TABLE 1
PERFORMANCE OF THE EEG-BASED AUTHENTICATION SYSTEM WITH
PRIVACY PROTECTION IMPLEMENTED USING GRAY-UNARY ENCODING.

Key | FAR | FRR H(SN|MN
mit) | @) | @ | T | B | Le | Ls ( (bit‘s) )
30 | 457 | 1.875 | 28 | 15 | 0.113 | 0.134 3
55 | 193 | 2.13 | 36 | 1/5 | 0.090 | 0.143 16
70 | 1.6 | 2.13 | 44 | 1/5 | 0.076 | 0.148 I3
80 | 383 | 15 | 70 | 1/7 [ 0.057 | O.I11 I3
110 | 1.83 | 1.875 | 95 | 1/7 | 0.043 | 0.116 21
140 | 2.458 | 2.375 | 128 | 177 | 0.033 | 0.120 22

V. CONCLUSIONS

In this paper we studied biometric authentication with
privacy protection based on EEG patterns, related to motor
imagery activities. We considered a realistic scenario where
EEG recording for 10 healthy subjects were performed with
a wireless device developed at imec, and data was collected
in four sessions separated in time. We demonstrated that we
could achieve recognition performance of around EER=1.87%
with effective key size of 21 bits and privacy leakage of 0.116.

REFERENCES

[1] R. Paranjape and et al., “The electroencephalogram as a biometric,” in
Can. Conf. on Elec. and Comp. Eng., 2001.

[2] R. Palaniappan and D. P. Mandic, “Biometrics from brain electrical
activity: A machine learning approach,” in IEEE Trans. on Patt. Analys.
and Mach. Intellig., 2007.

[3] S. Marcel and J. d. R. Milldn, “Person authentication using brainwaves
(EEG) and maximum a posteriori model adaptiation,” in IEEE Trans.
on Patt. Analys. and Mach. Intellig., 2007.

[4] K. Brigham and B. V. Kumar, “Subject identification from electroen-
cephalogram (EEG) signals during imagined speech,” in Biometric
Theory App. and Syst. (BTAS), 2010.

[5] M. K. Abdullah and et al., “Analysis of the EEG signal for a practical
biometric system,” Int. Jour. of Med., Health, Biomed., Bioeng. and
Pharm. Eng., 2010.

[6] E. Maiorana, D. La Rocca, and P. Campisi, “EEG-based biometric
recognition using EigenBrain,” in Multimed. and Expo Work., 2015.

[71 A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in 6th ACM
Conf. on Comp. and Comm. Sec., 1999.

[8] T. Ignatenko and F. Willems, “Biometric systems: Privacy and secrecy
aspects,” in IEEE Trans. on Inf. For. and Sec., 2009.

[9] E. Maiorana, D. Blasi, and P. Campisi, “Biometric template protection

using turbo codes and modulation constellations,” IEEE Work. on Inf.

Forens.and Sec. (WIFS), 2012.

E. Maiorana, D. La Rocca, and P. Campisi, “Cognitive biometric

cryptosystems a case study on EEG,” in Int. Conf. on Sys., Sig. and

Image Proc. (IWSSIP), 10-12 Sept. 2015.

[11] T. Ignatenko and F. Willems, “Privacy-leakage codes for biometric
authentication systems,” in [EEE Int. Conf. on Acous., Speech and
Sig.Proc. (ICASSP), 2014.

[12] F. Willems and T. Ignatenko, “Quantization effects in biometric sys-

tems,” in Inf. Theory and its App. (ITA), San Diego, USA, 2009.

T. Ignatenko and F. Willems, “Information leakage in fuzzy commitment

schemes,” IEEE Trans. on Inf. Forens. and Sec., vol. 5, no. 2, 2010.

C. Ye, A. Reznik, and Y. Shah, “Extracting secrecy from jointly gaussian

random variables,” in IEEE Int.Symp. on Inf. Theory, 2006.

H. Lu and et al., “Regulairzed common spatial pattern with aggregation

for EEG classification in small-sample setting,” in IEEE Trans. on

Biomed. Eng., 2010.

[16] M. De Hoon and et al., “Why yule-walker should not be used for

autoregressive modelling,” in Ann. of Nuc. Energy, Vol. 23, Iss. 15, 1996.

S. Lin and D. J. Costello, Error Control Coding, 2nd Ed. Pearson, 2004.

[10]

[13]
[14]

[15]

[17]

990



