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Abstract—This paper deals with the analysis of the Jeffrey’s
divergence (JD) between an autoregressive process (AR) and
a sum of complex exponentials (SCE), whose magnitudes are
Gaussian random values, which is then disturbed by an additive
white noise. As interpreting the value of the JD may not be
necessarily an easy task, we propose to give an expression of
the JD and to analyze the influence of each process parameter
on it. More particularly, we show that the ratios between the
variance of the additive white noise and the variance of the AR-
process driving process on the one hand, and the sum of the
ratios between the SCE process power and the AR-process PSD
at the normalized angular frequencies on the other hand, has a
strong impact on the JD. The 2-norm of the AR-parameter has
also an influence. Illustrations confirm the theoretical part.

Index Terms—Jeffrey’s divergence, Kullback-Leibler diver-
gence, AR process, Sum of complex exponentials, model com-
parison.

I. INTRODUCTION

Statistical signal processing based on a priori modeling
plays a key role in speech processing, radar processing, flood
forecasting, etc. However, choosing models is not necessarily
an easy task and model comparison can be of interest. As
Wold decomposition [1] states that any covariance-stationary
process can be decomposed into two mutually uncorrelated
component processes, i.e. a deterministic part that can be
modeled by a harmonic model and a purely non-deterministic
part, a great deal of interest has been paid to autoregressive
(AR) moving average (MA) processes but also to the sum
of complex exponentials whose magnitudes are random and
Gaussian distributed, which is then disturbed by an additive
white Gaussian noise (SCE). Various signals are often modeled
by these types of processes. In spectrum analysis, this leads to
subspace methods such as MUSIC, ESPRIT and their various
variants and to the high-resolution spectral analysis based on
AR modeling [2]. In speech processing, the signal can be
modeled by a sum of sinewaves or by an AR process. See
[3] for instance. In mobile communication systems, this is
the same type of choice that can be done for fading channel
modeling [4] [5].
In this paper, we suggest comparing a pth-order AR process
with a SCE process. For this purpose, we propose to use
the Jeffrey’s divergence (JD) which is the symmetric version
of the Kullback-Leibler (KL) divergence. Both divergences
have been used in a wide range of applications, starting
from biomedical applications [6], passing through radar clutter

analysis [7] and model motion comparison [8], to texture
analysis [9] [10]. They consist in comparing probability den-
sity functions (pdf). When dealing with process comparison,
the pdf of k successive samples are considered. The less
dissimilar the pdf are, the smaller the divergences are. As a
consequence, we could a priori guess that the JD between a
SCE process, defined by the normalized angular frequencies
of its complex exponentials, and an AR process which has
sharper and sharper resonances in its spectrum at the same
normalized angular frequencies becomes smaller and smaller.
Nevertheless, in practice, the results that can be obtained do
not necessarily confirm this statement. For this reason, we pro-
pose to derive the expression of the JD. Then, we analyze how
it evolves when the number of variates k increases. In addition,
the role played by the different parameters characterizing the
processes is studied.
This paper is organized as follows: in sections II, we briefly
recall the definition and the expression of the JD. Then, we
present the correlation properties of an AR process and those
of the SCE process. Then, the JD between both processes is
addressed. In section III, theoretical results are illustrated by
some examples.
In the following, Ik is the identity matrix of size k, Jk the
”shift” matrix which has ones on the first sub-diagonal and
zeros elsewhere, Tr the trace of a matrix, det the determinant
of a matrix, and diag(x) the diagonal matrix whose main
diagonal is defined by x. ek,l denotes the column vector of
size k with zeros except at the lth row where the element is
equal to 1. The upperscripts T , ∗ and H denote the transpose,
the conjugate and the hermitian. xk1:k2 = (xk1 , ..., xk2).

II. JEFFREY’S DIVERGENCE ANALYSIS

A. Definition of the Jeffrey’s divergence

To evaluate the dissimilarities between the distributions of
k successive values of two random processes, denoted as
p1(x1:k) and p2(x1:k), the KL divergence can be used and
satisfies [11]:

KL
(1,2)
k =

∫
x1:k

p1(x1:k)ln

(
p1(x1:k)

p2(x1:k)

)
dx1:k (1)

When the processes are both Gaussian and real with means
µ1,k and µ2,k and covariance matrices Q1,k and Q2,k, it can
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be easily shown that the KL satisfies1 [12]:

KL
(1,2)
k =

1

2

[
Tr(Q2,k

−1Q1,k)− k − ln
detQ1,k

detQ2,k
(2)

+ (µ2,k − µ1,k)TQ2,k
−1(µ2,k − µ1,k)

]
However, as the KL is not symmetric, the Jeffrey divergence
is often used. It is defined as follows:

JD
(1,2)
k =

1

2
(KL

(1,2)
k +KL

(2,1)
k ) (3)

When dealing with zero-mean processes in (2), (3) becomes:

JD
(1,2)
k ∝ −k +

1

2

[
Tr(Q2,k

−1Q1,k) + Tr(Q1,k
−1Q2,k)

]
(4)

B. Presentation of the processes under study

Two types of processes are considered:
1) Autoregressive process: Let us consider a pth-order AR

process. Its nth sample, xn, is defined as follows:

xn = −
p∑
i=1

api xn−i + upn (5)

where upn is the zero-mean Gaussian white driving process
with variance σ2

u,p, ap0 = 1 and {api }i=0,...,p are the AR
parameters that can be stored in a row vector of size p + 1,
denoted as ap. In addition, as the AR process is assumed to
be a strict pth-order AR process, one has: {api }i>p = 0.

Given (5), the AR process can be seen as the filtering of a
white noise, whose transfer function H(z) = 1/Ap(z) is only
defined by its p poles2. Its power spectrum density (PSD),
evaluated at the normalized angular frequency θ, is denoted
as SAR,p(θ):

SAR,p(θ) =
σ2
u,p

|
p∑
k=0

apke
−jkθ|2

=
σ2
u,p∣∣∣Ap(z)|z=ejθ ∣∣∣2 (6)

When the AR poles are close to the unit circle in the z-
plane, the PSD exhibits resonances which are located at the
normalized angular frequencies around the pole arguments.

In the following, QAR,k corresponds to the Toeplitz covari-
ance matrix of the vector storing k consecutive samples of the
AR process, namely xn:n+k−1. Note that the k elements of its
main diagonal correspond to the correlation function of the AR
process for a lag equal to 0, i.e. rAR,0. The τ th subdiagonal is
defined by the correlation function with lag τ , i.e. rAR,τ . There
are various ways to compute the inverse of the correlation
matrix of the AR process. Eigenvalue decomposition could be
considered but there is no explicit form for the eigenvalues
of an AR covariance matrix. It is true that there are some
approaches that provide approximations of the eigenvalues
when the size of the AR correlation matrix is large and when

1In the complex case, T is replaced by H and 1
2

disappears in (2). In the
following, ∝ is used instead of =.

2H(z) = 1
Ap(z)

= 1∏p
i=1 (1−piz−1)

where {pi}i=1,...,p denote the AR
poles.

the order of the AR process is equal to 1 [13]. An analytical
expression based on the AR parameters also exists [14]:

Q−1AR,k =
1

σ2
u,p

(FFH −GGH) (7)

with: F = Ik +

p∑
i=1

api Jk
i and G =

p∑
i=1

api Jk
k−i (8)

However, in this paper, we rather suggest using the LDL
factorization of QAR,k which involves the product between
a lower unit triangular matrix L and a diagonal matrix D. In
this latter case, the inverse of QAR,k satisfies:

Q−1AR,k =
(
LH
)−1

D−1L−1 (9)

where D−1 = diag(
1

σ2
u,k−1

. . .
1

σ2
u,0

) (10)

(
LH
)−1

=



1 0 . . . . . . 0

ak−11 1 0 . . . 0

ak−12 ak−21 1
...

...
. . . . . . 0

ak−1k−1 ak−2k−2 . . . . . . 1

 (11)

However, as the AR process is assumed to be a strict pth-order
AR process, the matrices D−1 and

(
LH
)−1

become:

D−1 = diag(
1

σ2
u,p

. . .
1

σ2
u,p︸ ︷︷ ︸

k−p

1

σ2
u,p−1

. . .
1

σ2
u,0

) (12)

and

(
LH
)−1

=



1 0 . . . . . . . . . . . . . . . 0
ap1 1 0 . . . . . . . . . . . . 0

ap2 ap1 1 0
...

...
...

. . .
. . .

. . . 0

app app−1

. . . 1
. . .

...

0 app ap−1
1

. . .
. . .

...
...

. . . app−1

. . . 1 0
0 0 . . . app ap−1

p . . . a11 1


(13)

To end up with this brief presentation about AR processes,
let us recall that the AR parameters as well as the variance of
the driving process can be estimated by using the Yule-Walker
equations, the correlation method, adaptive filters such as the
LMS and the APA, Burg’s method, etc. [1].

2) Sum of complex exponentials (SCE) disturbed by an
additive noise: The process is Gaussian zero-mean and defined
by its k × k covariance matrix QSCE,k:

QSCE,k = SkPS
H
k + σ2Ik. (14)

where Sk =
[
S1
k . . . SMk

]
is a matrix which satisfies:

Sk =


1 . . . 1
ejθ1 . . . ejθM

...
...

ej(k−1)θ1 . . . ej(k−1)θM

 (15)
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with k the number of successive samples that are considered
and M the number of complex exponentials with normalized
angular frequencies {θm}m=1,...,M different from each other
in the interval [−π, π[. In addition, P is a diagonal matrix of
size M ×M whose main diagonal is defined by the variances
{γm}m=1,...,M of the random zero-mean magnitudes of the
complex exponentials. At this stage, let us recall the following
properties that the vectors {Smk }m=1,...,M satisfy:

1
k (Smk )

H
Smk = 1

1
k (Smk )

H
Snk = 1

k

∑k−1
t=0 e

j(θm−θn)t

=
sin(

k(θm−θn)
2 )

ksin(
(θm−θn)

2 )
ej(

(k−1)(θm−θn)
2 )

(16)

As lim
k→+∞

| sin(
k(θm−θn)

2

ksin(
(θm−θn)

2

)| = 0 for any set of normalized

angular frequencies θn 6= θm, (16) becomes:{
1
k (Smk )

H
Smk = 1

lim
k→+∞

1
k (Smk )

H
Snk = 0 (17)

Given (14) and using the matrix inversion lemma 3, one has:

Q−1SCE,k =
1

σ2

(
Ik − Sk

(
σ2P−1 + SHk Sk

)−1
SHk

)
(18)

In (18), let us apply again the inversion matrix lemma on the
matrix

(
SHk Sk + σ2P−1

)−1
. This leads to:

(SHk Sk + σ
2
P−1)−1 = (SHk Sk)−1 (19)

−(SHk Sk)−1(σ−2P + (SHk Sk)−1)−1(SHk Sk)−1

Given (19),
(
Sk
(
σ2P−1 + SHk Sk

)−1
SHk

)
is rewritten as:

Tk = Vk + Uk (20)

with: Vk = Sk
(
SHk Sk

)−1
SHk

Uk = −Sk(SHk Sk)−1×
(σ−2P + (SHk Sk)−1)−1(SHk Sk)−1SHk

(21)

When k increases, due to (16), (21) becomes: lim
k→+∞

Vk = 1
kSkS

H
k

lim
k→+∞

Uk = −σ
2

k2 SkP
−1SHk

(22)

Therefore, given (22), (18) becomes:

lim
k→+∞

Q−1SCE,k =
1

σ2
(Ik −

1

k
SkS

H
k +

σ2

k2
SkP

−1SHk ) (23)

Finally, let us point out the fact this process is characterized
by a power spectrum which has a discrete part due to the
complex exponential functions and a continuous part due to
the additive white noise.

In the next sections, using the definitions and properties of
the JD and the processes under study, we propose to express
Tr(QSCE,k

−1QAR,k) and Tr(QAR,k−1QSCE,k).

C. Expression of the trace Tr(QSCE,k−1QAR,k)

Given (14) and (23), after developing,
Tr(QSCE,k

−1QAR,k) is the sum of three terms denoted as

3Given the matrices A, U , C and V where
A and C are assumed to be invertible, one has:
(A+ UCV )−1 = A−1 −A−1U

(
C−1 + V A−1U

)−1
V A−1

Ω, Ψ and Υ:

Ω =
1

σ2
Tr (QAR,k) =

k

σ2
rAR,0 (24)

Ψ = − 1

kσ2
Tr(SkS

H
k QAR,k) = − 1

kσ2
Tr(SHk QAR,kSk)

(25)
and

Υ =
1

k2
Tr(SkP

−1SHk QAR,k) =
1

k2
Tr(P−1SHk QAR,kSk)

(26)
In (25) and (26), SHk QAR,kSk has to be computed. Let
us study what the value of Smk

HQAR,kS
m
k is, when

m = 1, ...,M :
Smk

HQAR,kS
m
k = (27)[

k−1∑
τ=0

rAR,τe
−jτθm . . .

0∑
τ=1−k

rAR,τe
−j(τ+k−1)θm

]
×

[
1 . . . ej(k−1)θm

]T
By rearranging the terms, (27) can be rewritten as follows:

Smk
HQAR,kS

m
k =

k−1∑
i=0

i∑
τ=−i

rAR,τe
−jτθm (28)

Then, let us introduce a truncated correlogram CAR,i based
on a window of size 2i+ 1 and computed for the normalized
angular frequency θm:

CAR,i(θm) =

i∑
τ=−i

rAR,τe
−jτθm (29)

By combining (25) with (28) and (29) on the one hand and
(26) with (28) and (29) on the other hand, one has:

Ψ = − 1
kσ2

M∑
m=1

k−1∑
i=0

CAR,i(θm)

Υ = 1
k2

M∑
m=1

1
γm

k−1∑
i=0

CAR,i(θm)

(30)

Given (24) and (30), Tr(QSCE,k−1QAR,k) can be expressed
as follows when k tends to infinity:

Tr(QSCE,k
−1QAR,k) ≈ (31)

k

σ2
rAR,0 +

M∑
m=1

1

k
(

1

kγm
− 1

σ2
)

k−1∑
i=0

CAR,i(θm)

D. Expression of the trace Tr(Q−1AR,kQSCE,k)

Given (9) and (14), Tr(Q−1AR,kQSCE,k) can be expressed
as the sum of two traces, denoted as ∆ and Θ:

∆ = Tr(σ2
(
LH
)−1

D−1L−1) = σ2Tr(L−1
(
LH
)−1

D−1)
(32)

Using (13), this leads to:

∆ = (k − p) σ
2

σ2
u,p

p∑
i=0

|api |
2 +

p−1∑
j=0

σ2

σ2
u,j

j∑
i=0

|aji |
2 (33)

= (k − p) σ
2

σ2
u,p

‖ap‖2 +

p−1∑
j=0

σ2

σ2
u,j

‖aj‖2
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with ‖aj‖2 the 2-norm of the jth-order AR-parameter vector.
Remark: When considering a 1st-order AR process, Q−1AR,k
has a simple expression:

Q−1AR,k =
1

σ2
u,1

(a11Jk + a11
∗
JTk + (1 + |a11|2)Ik (34)

− |a11|2(ek,1e
T
k,1 + ek,ke

T
k,k).

Therefore, Tr(σ2Q−1AR,k) = σ2

σ2
u,1

(k + (k − 2)|a11|2). This is
also confirmed by (33).
Then, let us give some details about the second trace. Taking
into account the expression of the PSD of the AR process
for any order i = 0, ..., p evaluated at normalized angular
frequencies θm with m = 1, ...,M , one has:

Θ = Tr(SHk (LH)−1D−1L−1SkP ) (35)

=
M∑
m=1

γm(
k − p

SAR,p(θm)
+

p−1∑
i=0

1

SAR,i(θm)
)

It should be noted that in the above equation (35), we can
organize the terms as follows:

Θ =

M∑
m=1

γm

(
k − p− 1

SAR,p(θm)
+

1

Scapon(θm)

)
(36)

Indeed, the pseudo-spectrum Scapon that can be deduced using
Capon’s method [2] can be expressed by:

Scapon(θm) =

[
p∑
i=0

1

SAR,i(θm)

]−1
(37)

=
1

[1 . . . e−jpθm ]Q−1AR,p+1 [1 . . . e−jpθm ]
H

E. Expression of the JD
Combining (31), (33) and (35), the JD can be approximated

when k tends to infinity as follows:

JDk ∝ −k +
1

2
(
k

σ2
rAR,0 +

M∑
m=1

k−1∑
i=0

1

k

(
1

kγm
− 1

σ2

)
CAR,i(θm)

(38)

+

(
(k − p) σ

2

σ2
u,p

‖ap‖2 +

p−1∑
j=0

σ2

σ2
u,j

‖aj‖2
)

+

M∑
m=1

γm

(
k − p

SAR,p(θm)
+

p−1∑
i=0

1

SAR,i(θm)

)
)

F. Analysis of the increment of the JD

Given (38), let us now deduce the asymptotic increment,
i.e. the increment of the JD when k tends to infinity:

∆JD = lim
k→+∞

JDk − JDk−1 (39)

When k tends to infinity, one has:

∆JD ∝ −1+
1

2

rAR,0σ2︸ ︷︷ ︸
1stterm

+
σ2

σ2
u,p

‖ap‖2︸ ︷︷ ︸
2ndterm

+

M∑
m=1

γm
SAR,p(θm)︸ ︷︷ ︸
3rdterm

 (40)

According to (40), we can notice that the asymptotic JD
increment depends on three main terms:

1) rAR,0
σ2 is the power of the AR process filtered by an all-

pass filter whose transfer function is 1
σ ,

2) σ2

σ2
u,p
‖ap‖2 is the power of the additive white noise with

variance σ2 that has been filtered by the finite-impulse
response (FIR) ”AR inverse filter” whose transfer func-
tion is Ap(z)

σu,p
,

3) the third term depends on the sum of the ratios be-
tween the SCE process power and the AR-process PSD
at the normalized angular frequencies {θm}m=1,...,M .
Nevertheless, by using (6), each term γm

SAR,p(θm) can be
also seen as the power of the complex exponential at
θm which has been filtered by the AR inverse filter.
Therefore, this third term corresponds to the power of
the deterministic part of the SCE process filtered by the
AR inverse filter.

The above results lead to some comments:
1) when M = p = 0, (40) reduces to:

∆JD ∝ −1 +
1

2
(
σ2
u,1

σ2
+

σ2

σ2
u,1

) (41)

It corresponds to the JD increment between white noises
with variance σ2

u,1 and σ2.
2) The smaller the three terms in (40) are, the smaller

the asymptotic JD increment is. However, they do not
necessarily have the same behavior with respect to the
process parameters. Thus, if p = M and if the arguments
of the AR poles correspond to the normalized angular
frequencies {θm}m=1,...,M , resonances (resp. rejections)
may appear in the transfer function H(z) (resp. in
Ap(z)). The closer to the unit circle in the z-plane the
poles {pi}i=1,...,p are, the sharper the resonances of
H(z) (resp. the more important the rejections of Ap(z))
are. In this case, the 1st term in (40) can grow because
of rAR,0 ∝

∫
SAR,p(θ) dθ and ‖ap‖2. Meanwhile, the

2nd and 3rd term in (40) tend to be smaller and smaller.
We will illustrate this phenomenon in the next section.

III. ILLUSTRATIONS AND COMMENTS

In this section, for the sake of simplicity, we suggest
comparing a 1st-order AR process with a SCE process. The
influences of the different parameters can be also illustrated.
Note that rAR,0 =

σ2
u,1

1−|a11|2
.

A. Influence of the AR-parameter argument

The simulation protocol is the following: |a11| = 0.95.
σ2
u,1 = 1. M = 1, γ1 = 10, θ1 = π/2 and σ2 = 1. The

argument of a11 is in the interval ] − π, 0[. Based on Fig. 1,
which shows the asymptotic JD increment as a function of
the argument of a11, the asymptotic JD increment reaches its
minimum when the argument of a11 is equal to −π/2. In this
case, the resonance of AR process appears at the same angular
frequency as the one of the SCE process.

B. Influence of the AR-parameter modulus

The simulation protocol is the following: a11 is in the interval
] − 1, 0[. It first increases from −0.95 to −0.70 with a step
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Fig. 1: Evolution of the asymptotic JD increment as a function of the
argument of a11

Fig. 2: JD derivative vs number of variates, second simulation with
six cases where the modulus of a11 varies

equal to 0.05, which means that the PSD exhibits a resonance
at the normalized angular frequency θ = 0 which is less
and less sharp. σ2

u,1 = 1. M = 1, γ1 = 10, θ1 = 0 and
σ2 = 1. In Fig. 2, the derivative of the JD obtained from the
expressions of QAR,k and QSCE,k tends to the asymptotic
increment whatever the case under study. Two regimes appear:
a transient one and then a stationary-like one. This confirms
our theoretical study.

Fig. 3 shows the asymptotic increment as a function of
a11 where the 6 cases addressed above are pointed out. The
asymptotic increment reaches its minimum when the modulus
of a11 is not necessarily close to the unit-circle but around 0.7.
It illustrates our comments of section F.

C. Influence of the additive-noise variance

The simulation protocol is similar to that of section III.A,
except that a11 = −0.95 while σ2 varies between 0.5 and
10. According to Fig. 4, (40) tends to infinity if σ2 tends to
zero. This illustrates the main difference between the spectrum

Fig. 3: Evolution of the asymptotic JD increment as a function of a11
where the dotted points corresponds to the cases addressed in Fig.2

Fig. 4: Evolution of the asymptotic JD increment as a function of σ2

properties of both processes: one tends to be discrete whereas
the other is continuous.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, our purpose was to study the JD when
comparing an AR process with a sum of complex exponentials
and an additive white noise. Selecting a too small value for
the number of variates k can be questionable because the JD
has a transient period before converging to a stationary regime
characterized by an asymptotic increment. The expression of
this latter depends on the parameters of both processes. Our
work is a new step to interpret the value of the JD because
the expression that is provided is a good basis to see how the
parameters can influence the value of the JD. In practical case,
as the process parameters can be estimated from the data, the
asymptotic increment can be estimated directly from the data.
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