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Abstract—This paper introduces the use of the TFRCC fea-
tures, a time-frequency reassigned feature set, as a front-end
for speech recognition. Compared to the power spectrogram,
the time-frequency reassigned version is particularly helpful in
describing simultaneously the temporal and spectral features
of speech signals, as it offers an improved visualization of the
various components. This powerful attribute is exploited from the
cepstral reassigned features, which are incorporated in a state-of-
the-art speech recognizer. Experimental activities investigate the
proposed features in various scenarios, starting from recognition
of close-talk signals and gradually increasing the complexity of
the task. The results prove the superiority of these features
compared to a MFCC baseline.

I. INTRODUCTION

Automatic speech recognition (ASR) is based on statistical
analysis of speech, performed by complex frameworks, for
instance hidden Markov models (HMM) [1] or, more recently,
deep neural networks (DNN) [2]. Before fed to such frame-
works, the acoustic input signal is represented in compact form
through sets of parameters, such as the Mel Frequency Cepstral
Coefficients (MFCCs) [3] or the Perceptual Linear Predictive
coefficients (PLPs) [4]. These are usually augmented with
their first and second order derivatives [5]. The parametrization
of the speech signals is designed to discard information that
is considered irrelevant to the discrimination of the various
speech units. Additional transformations aim at the reduction
of the effects caused by environmental conditions, for example
noise and reverberation, and the variabilities that exist among
different speakers [6].

The common goal of the various approaches to the
parametrization of speech, is to produce a compact set of
values that describe the spectral shape of short segments of
speech. Such segments are usually around 25ms long and are
updated with a rate of around 10ms. Within each segment,
the speech signal is assumed to be stationary, a fact that
enables the use of the short-time Fourier analysis (STFT) for
the estimation of the spectral content of the speech. Although
the STFT enables the summarization of the speech content
and the periodical update of the extracted parameters, there is
a long list of alternative time-frequency distributions that have
been studied in the context of speech processing [7].

Among these various time-frequency distributions, the time-
frequency reassignment is a method that improves the rep-
resentation of the speech spectral content, as it is very use-
ful in representing simultaneously the temporal, i.e.,, onsets
of plosive sounds, and the spectral features, i.e.,, harmonic
structure of vowels, of speech signals [8]. In addition, when

the recognized speech signal is impinged by reverberation,
its spectral envelope, and therefore the MFCC features that
describe this envelope, are smoothed and carry less informa-
tion. The reassigned spectrogram, obtained from the method
of time-frequency reassignment, is a sharpened version of
the traditional spectrogram and the reassignment operation
mitigates these smoothing disturbances that are introduced by
the reverberation.

In [9], we proposed a set of cepstral features extracted from
the time-frequency reassigned spectrogram of the speech sig-
nal, called Time-Frequency Reassigned Cepstral Coefficients
(TFRCC), in order to address speech segmentation. TFRCC
were proved particularly successful in detecting the boundaries
between phones, when a very strict evaluation tolerance was
considered. This can be attributed to the particularly good
temporal resolution that can be achieved with the reassigned
spectrogram, without sacrificing the spectral resolution. Here,
we extend the scope of the work reported in [9], and in-
vestigate the TFRCC features when used as a front-end for
speech recognition. We target various ASR scenarios, such as
recognition of close-talk sentences, and of simulated and real
reverberant versions of these sentences. In the distant speech
recognition (DSR) task we further investigate how a front-end
information fusion approach, namely channel selection (CS)
can be combined with the proposed features.

The rest of this paper is organized as follows. In Section
II we present an overview of front-end solutions for ASR.
In Section III we overview the method of time-frequency
reassignment and the TFRCC feature extraction method. In
Section IV we present the experimental framework, setup
and datasets, while the results of the conducted experiments
are presented and discussed in Section V. Finally, we draw
conclusions and discuss future activities in Section VI.

II. RELATED WORK

Feature extraction is the process of extracting sets of de-
scriptors that represent specific properties of acoustic signals.
Opposite to transformations, e.g. the Fourier transform, the
feature extraction aims first, at representing higher level char-
acteristics and, second, at significantly reducing the signal
dimensionality.

Short-time frequency analysis has been extensively used
in the majority of speech processing front-end techniques,
since it was first introduced in 1940s [10]. Another important
introduction in the field was the use of non-linear filter banks,
as for instance those in the Bark and Mel scales [11], [12],
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as a means of modelling the nonlinear frequency resolution
of human ear. The next advancement in feature extraction for
ASR was the use of the cepstrum, which was introduced in
[13] and then applied in the most commonly used feature sets
until today, namely the MFCC and PLP.

An important part of front-end design for speech recognition
are the various transformations that can be applied on certain
feature vectors. Cepstral mean and variance normalization of
cepstral features are both very common examples.Vocal tract
normalization compensates for variabilities in the speech sig-
nal caused by the speaker dependent vocal tract shape.Similar
effects can be achieved with the use of cepstral based linear
transformations, such as Maximum Likelihood Linear Regres-
sion (MLLR) [14], and feature space MLLR (fMLLR) [15],
commonly used for speaker adaptation.

Recent speech recognition evaluation campaigns, for exam-
ple REVERB [16], CHiME-3 [17] and ASpIRE [18], indi-
cate that state-of-the-art systems often choose sophisticated
feature extraction methods, such as i-vector and gammatone
ceptral coefficient [19], and incorporate additional front-end
processing units, such as speech enhancement, beamforming
and CS in order to improve recognition performance in real
applications.

III. TIME-FREQUENCY REASSIGNED CEPSTRAL
COEFFICIENTS

The limitations of the short-time power spectrum that stem
from the well known trade-off between time and frequency
resolution have been extensively discussed in the literature
[8], [20]. Time-frequency reassignment addresses this time-
frequency trade-off, offering an improved representation of the
temporal evolution of spectral components. Time-frequency
reassignment has been exploited so far in the context of various
applications, and utilized as the time-frequency representation
of acoustic signals. Speech signal analysis and visualization is
one of the most important application areas for the reassigned
spectrogram. The suitability of the reassigned spectrogram in
visualizing individual vocal chord pulsations has been very
often exploited, as for example in [21]. In [22] the method
of reassignment was applied in the context of speech for-
mant analysis, and the notion of re-quantizing the reassigned
spectrogram points at the STFT grid centers was introduced.
In [23] the reassigned spectrogram was utilized in a double-
vowel identification task which showed improvements over the
recognition based on the traditional spectrogram. In a slightly
different group of applications in the area of speech signal
analysis, the reassigned spectrogram was exploited for speaker
identification. The concept was first introduced in [24] and
further discussed in [25].

A. Time-frequency reassignment

The polar form of the continuous time STFT of a signal is
expressed as

X(t, ω) =M(t, ω)ejφ(t,ω) , (1)

where M(t, ω) is the magnitude and φ(t, ω) is the phase
of X(t, ω), defined as a function of continuous time t and
angular frequency ω. The method of reassignment assigns to
(t, ω) a new time-frequency coordinate that better reflects the
distribution of energy in the analysed signal. The reassigned
time-frequency coordinates (t̂, ω̂) may be calculated from the
derivatives of the spectral phase as follows

t̂(t, ω) = −∂φ(t, ω)
∂ω

(2)

ω̂(t, ω) = ω +
∂φ(t, ω)

∂t
. (3)

The time-frequency reassigned point (t̂, ω̂) represents the
center of gravity of the energy distribution of the signal. The
method of reassignment results in a noisy representation, since
random like noise appears in areas where there is no energy
to reassign. Nevertheless, there is a de-noising technique that
exploits a set of thresholds and can be used to address this
problem [26].

B. Feature extraction

As proposed in [9], TFRCC features are extracted in a set
of steps, similar to those used in the MFCC calculation. These
steps are summarized as follows.

1) A pre-emphasis filter is applied to the speech signal.
2) The complex spectrum of the input, Xh(t, ω) is calcu-

lated, with the used of the discrete STFT.
3) In the case of the discrete STFT the reassignment

operations in (2) and (3) cannot be directly computed,
therefore the method described in [27] is used in order to
reassign the spectrogram. In the obtained representation,
X(t̂, ω̂), spectral energy from the coordinate (t, ω) has
been reallocated to the coordinate (t̂, ω̂).

4) X(t̂, ω̂) is defined in the continuous time-frequency do-
main and has to be re-quantized in order to be exploited
in the subsequent processing. This is a common step in
applications that utilize the reassigned spectrogram as
the time-frequency representation of data [28]. Instead of
the common approach, that performs re-quantization by
moving each reassigned point back to the closer STFT
grid point, as in [29], we TFRCCs follow an approach
that combines the re-quantization with the application of
the Mel-scale filter-bank and an application of a moving
window in time [9].

5) The discrete Sw(m, k) is logarithmically compressed.
6) The features are mapped into the cepstrum domain with

the application of the IDCT.
TFRCC features are essentially equivalent to the MFCC
features, but they offer a better localization of the energy
distribution of the signal.

IV. RECOGNITION EXPERIMENTS

The recognition experiments in this work were designed
in order to investigate the behaviour of the TFRCC features
compared to the MFCC features, under different acoustic
conditions.
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A. Setup and datasets

For the experiments we used data from the DIRHA Project
framework [30]1. In particular, for the clean speech experi-
ments we used close-talk recordings of the wall street journal
(wsj) and phonetically rich (phrich) datasets, acquired in the
FBK recording studio. Each of these sets comprises 409
sentences. For DSR experiments, we used data recorded in
the living-room, a room with T60 ≈ 0.75s, and we selected
a set of 5 microphones installed on the walls and the ceiling
of this room. For the training, we used the clean Wall Street
Journal (WSJ0-5k) [31] training set. These utterances were
reverberated with IRs measured in the living-room environ-
ment. As test material we used two different sets, extracted
from the DIRHA-English corpus2 [32], [33]. The first test set
corresponds to the WSJ0-5k sub-set, and each of its two sub-
sets i. e., simulated and real, is composed of 409 sentences,
uttered by 6 speakers. We call these sim-wsj and real-wsj
respectively. The second test set is composed of phonetically-
rich sentences, extracted from the Harvard Corpus, and it is
called phrich dataset.

B. Recognition framework

1) Feature extraction: Each recognition experiment is per-
formed for both sets of acoustic features, extracted from
analysis frames of 25ms long, with an analysis rate of 10ms.
Both sets of features are augmented with their first and
second order derivatives. The TFRCC feature extraction is
implemented within the Kaldi speech recognition toolkit [34],
which is also used for building the recognizer.

2) Acoustic modelling: The “s5” Kaldi recipes concerning
TIMIT and WSJ tasks were adapted to the DIRHA English
framework as well as to model the front-end processing output
described above. For our experiments, we consider 5 different
acoustic models of increasing complexity. In the first level
(mono), acoustic models represent 48 context independent
phones. A three state left-to-right HMM is used to model each
of the phones. The tri1 acoustic models are based on simple
triphone training, on features augmented with first and second
order derivatives. After that, tri2 and tri3 acoustic models
are trained on features transformed with linear discriminant
analysis (LDA) and maximum likelihood linear regression
(MLLR), with tri3 models trained with speaker adaptive
training. Furthermore, DNN running on top of the LDA-
MLLR transformed features, were used. The DNNs were built
according to Karel’s recipe [35] with a network architecture
shaped by 6 hidden layers of 1024 neurons, with a context
window of 11 consecutive frames (5 before and 5 after the
analysis frame), and an initial learning rate of 0.008.

3) Language modelling: Concerning the language mod-
elling, for the wsj datasets we employ the bigram language
model, as in the original Kaldi recipe. For the phrich dataset,
in order to better focus on the behaviour of the proposed

1http://dirha.fbk.eu.
2The DIRHA-English dataset will be publicly distributed through the

Linguistic Data Consortium (LDC)

TABLE I: Recognition WER results (%) for the clean WSJ
dataset.

Features mono tri1 tri2 tri3 dnn
MFCC 22.9 11.1 10.4 6.3 3.7
TFRCC 22.7 11 10 5.8 3.5

TABLE II: Recognition PER results (%) for the clean phrich
dataset.

Features mono tri1 tri2 tri3 dnn
MFCC 47.3 42.8 40.2 32.9 28.1
TFRCC 47.3 41.9 39.2 32.1 27.2

features in encoding acoustic information, we adopt a pure
phone-loop as in [32]. Although this decision yields a loss in
overall recognition performance, we avoid certain non-linear
behaviours due to the language modelling.

V. EXPERIMENTS AND RESULTS

A. Close-talk performance

Here, we report the recognition results that are obtained
for the close-talk sentences of each dataset, as these were
recorded in the FBK recording studio. The recognition results
for the clean wsj test set are presented on Table I. Concerning
the acoustic models, as expected the use of more complex
models, from mono to DNN based ones, results in significant
improvements on the recognition performance. In addition, we
observe the consistent improvements that the TFRCC features
yield, compared to the MFCC features, for all the studied
acoustic model types.

Next, Table II reports the results for the close-talk record-
ings of the phrich utterances. The improvement of the recog-
nition performance with the use of more complex acoustic
models is still evident in this experiment. Finally, also for
this dataset the TFRCC features result in improved recognition
performances.

B. Performance under reverberation

Here, we study the performance of various features and
acoustic models in reverberant conditions. First, we present
the single distant microphone (SDM) results for the set of 5
microphones that was selected, as described in Section Section
IV. The results reported in Table III correspond to the simwsj
set and in Table IV to the real-wsj set. As expected, the
presence of reverberation drastically reduces the recognition
performance for both cases. Nevertheless, we still observe
that the use of TFRCC features results in improvements of
the performance evident in all the microphones considered
here. It is interesting to note that for each feature set the
microphone that corresponds to the lower word error rate
(WER) is not always the same. For instance, in the last
columns of Table 4, we observe that MFCC result in the lowest
WER for microphone LIC, while TFRCC achieve the higher
performance for microphone L4L. This trend may suggest
that TFRCC and MFCC provide a different behaviour in the
modelling of reverberated speech signals. However, we plan
to conduct an in-depth analysis on this issue to better correlate
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TABLE III: SDM WER results (%) for the recognition of the
sim-wsj dataset

(a) Results using MFCC based front-end

Mic mono tri1 tri2 tri3 dnn
L1C 65.5 42.3 36 24.8 16.1
L2R 63.9 41.2 35.4 24.4 15.5
L3L 65.2 41.9 35.9 24.8 16.2
L4L 67.5 43.4 37 24.9 16.2
LA6 68.5 44.3 38.9 26.3 17.1
Avg 66.1 42.6 36.6 25. 16.2

(b) Results using TFRCC based front-end

Mic mono tri1 tri2 tri3 dnn
L1C 63.9 41.3 34.7 23.9 15.6
L2R 64.2 39.5 35.1 24.2 15
L3L 63.3 40.2 34.4 23.5 15.7
L4L 65.2 41.4 35.4 24.2 15.9
LA6 66.1 42 37.1 25.4 16.5
Avg 64.5 40.9 35.3 24.2 15.7

TABLE IV: SDM WER results (%) for the recognition of the
real-wsj dataset

(a) Results using MFCC based front-end

Mic mono tri1 tri2 tri3 dnn
L1C 66.7 40.9 33.9 23.1 14.5
L2R 68.1 43.1 37 24.1 16.7
L3L 64.5 40.6 33.6 22.8 15.1
L4L 64.4 41.9 34.1 23.3 15.4
LA6 66.2 42.4 35.7 22.9 15.4
Avg 66 41.8 34.9 23.2 15.4

(b) Results using TFRCC based front-end

Mic mono tri1 tri2 tri3 dnn
L1C 65.1 40.5 34.2 22.8 14.9
L2R 67.5 42.9 35.8 24.1 16.5
L3L 64 38.9 33.2 22.3 14.4
L4L 64.2 41 33.4 22.7 14.2
LA6 65.4 40.6 33.6 22.6 14.4
Avg 65.2 40.8 34.1 22.9 14.9

this specific experimental evidence with the properties of the
front-end processing.

Next, we study how the TFRCC features perform in a
common setup for multi-microphone DSR, namely CS [36],
[37]. According to this practice, from the set of available
microphones only one is chosen to be used for the decoding
of each utterance. Table V summarizes different CS results
for the sim-wsj dataset, using DNN based acoustic models.

TABLE V: CS results (%) for the simdev-WSJ dataset. The
reported results correspond to DNN based acoustic models.

MFCC TFRCC
Avg. SDM 16.2 15.7
Oracle 10.16 9.57
CD informed 13.69 13.5
CD blind 14.71 14.28

TABLE VI: Recognition PER results (%) for the reverberant
phrich dataset.

Features mono tri1 tri2 tri3 dnn
MFCC 69.5 64 62.5 60.9 54.9
TFRCC 69.1 63.6 61.6 57 52.4

First, the average SDM results, as taken from the last rows
of Tables III and IV can be considered a lower bound of a
CS method. Next, an oracle selection of the best microphone
is the upper bound of any CS method, since it performs an
a posteriori selection of the best recognition output. Finally,
we report the results of two actual CS methods, which use
cepstral distances (CD) in order to perform CS. The first, CD
informed, uses the close-talk reference while the second, CD
blind, does not. More details on CD based CS can be found in
[38]. We observe that the TFRCC features consistently result
in improved recognition performance, not only for the upper
and lower bounds of CS, but for both CD based approaches
as well. These results reinforce the use of TFRCC features in
the context of multi-microphone DSR.

VI. CONCLUSIONS

In this work we presented a set of experimental results for
the recognition of clean and reverberant data, based on the use
of a time-frequency reassigned set of features. We found that
these features consistently lead to improvements, compared
to the use of the MFCC features. Since the results are so
far encouraging, we still wish to further investigate several
aspects of the proposed TFRCC features. For instance, we are
interested in understanding how the various thresholds that
can be applied on the time-frequency reassigned spectrogram
in order to remove some of the random noise, can affect the
recognition results. These thresholds manage the amount of
harmonic and impulsive information in the final representation,
and therefore have an important role in the description of the
spectral and temporal features of speech signals. In addition,
we aim to the design of a CS method that is based on the
particular characteristics of the reassigned spectrogram, and
can further improve multi-microphone DSR.
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