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Abstract—Executing a dataflow program on a parallel platform
requires assigning to each buffer a given size so that correct
program executions take place without introducing any deadlock.
Furthermore, in the case of dynamic dataflow programs, specific
buffer size assignments lead to significant differences in the
throughput, hence a more appropriate optimization problem is to
specify the buffer sizes so that the throughput is maximized and
the used resources are minimized. This paper introduces a new
heuristic methodology for the buffer dimensioning of dynamic
dataflow programs, which is considered as a stage of a more
general design space exploration process.

I. INTRODUCTION

Last generation of massive parallel many/multi-core pro-
cessing platforms have brought a renewed interest in dataflow
programming approaches attempting to find more natural
methodologies to efficiently exploit the available parallelism.
The evolution of processing platforms towards concurrent
systems composed of homogeneous or heterogeneous arrays of
processors providing massive parallelism has been essentially
triggered by the limitations of the switching frequency and the
power dissipation of deep submicron CMOS technology. In
the meantime, the common practice of software development
is still relying on sequential approaches and ad-hoc transfor-
mations in concurrent non-portable SW versions. In principle,
a dataflow program is defined as a directed graph in which
each node represents a computational kernel, called actor, and
each edge a first-in first-out (FIFO) lossless interconnection
channel, called and often implemented by a memory buffer.
The processing part of the actors is encapsulated in the atomic
executions (firings) called actions. The communication be-
tween actors is permitted only by the exchange of atomic data
packets, called tokens, by means of interconnection channels
implemented by buffers with, in the abstract description of
the program, infinite size. Figure 1 illustrates the structure of
a simple dataflow program.

A dataflow program can be seen as an high-level description
or specification of a processing algorithm which abstracts
from aspects of the actual execution on a processing plat-
form. The program is the starting point of the stages of a
design flow that generates specific hardware and/or software
implementations by removing the abstractions and adding
design settings according to specific constraints of the platform
and optimization objectives of the design. Hence, a precious
feature of a dataflow program is essentially the portability

of the program providing the abstract implementation of an
application and the portability of implementation features such
as the parallelism as explicitly exposed in the abstract dataflow
program itself [1], [2]. Such properties are very interesting,
but require dealing with several challenges in the design flow
process of generating efficient implementations for the new
many/multi-core processing platforms. The effectiveness of
an implementation depends on several settings determined at
the different design flow stages, among which the commonly
outlined in literature are: (a) the partitioning of the actors
to the available processing units (binding, mapping in the
space domain), (b) the sequencing of actor executions for
each processing unit (scheduling or mapping in the temporal
domain) [3]. These design settings might need to comply with
several constraints and/or optimization design objectives such
as data throughput, energy consumption, memory utilization,
latency etc.

Actions

State

Actor guarded atomic
Action

encapsulated State

point to point, buffered
token passing Connection

Fig. 1: Illustration of an example of a simple dataflow pro-
gram.

According to the specific Model of Computation MoC used
to express the dataflow program, the sizes of the intercon-
necting channels (buffers) constituting the network might be
considered unbounded [4] and this is the case for all dynamic
MoC. However, when a program is executed on a given
platform, each buffer needs to be specified with a finite size. A
necessary constraint at the base of this process is to specify the
buffer sizes so that the program can correctly execute without
any deadlocks. A possible design optimization objective can
also be to minimize the amount of memory used by all
buffers in order to meet specific memory constraints of the
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platform (i.e., embedded-memory limitations of FPGAs). In
the case of dynamic dataflow programs, data dependencies
determining action executions and the characteristics of the
traffic flowing across each buffer are important factors that
determine the overall program data throughput and are subject
to the constraints imposed by the finite buffer sizes. The
joint optimization problem aiming at the minimization of the
total buffer size and the maximization of program throughput
constitutes an interesting design objective. The methodology
described in this paper provides a new heuristic solution to
this problem. The optimization stage can be considered a part
of a more general design space exploration and optimization
approach capable of dealing with the more general class of
dataflow MoC, namely dynamic dataflow programs.

The methodology is based on building a model of the
dataflow program execution by generating the graph represent-
ing the execution trace with the associated dependencies. The
model built with a given set of statistically meaningful input
stimuli and then completed by the selected design settings,
corresponding to a point in the multidimensional design space,
provides accurate and rich measures about the performance
of the corresponding implementations. The exploration of
the multidimensional design space in terms of partitioning,
scheduling and buffer size settings proceeds according to pro-
vided metrics. It differs from other approaches that disregard
the exploration of the buffer size settings and limit it to finding
only a deadlock-free configuration (e.g. [5]) or explore the
buffer size configurations disregarding the other dimensions
in the space (e.g [6]). In this context, to the best of our
knowledge, this is the first work that considers the buffer
dimensioning problem with regards to throughput improve-
ment and targets dynamic applications, without limiting the
approach to a subset of static dataflow programs.

The paper is structured as follows: Section II formulates the
design space exploration problem and describes the underlying
methodology related to the construction of an execution trace.
Then, Section III describes two variants of a throughput
constrained buffer minimization heuristic, which is the core
contribution of the paper. Experimental results are reported and
discussed in Section IV. Finally, conclusions and directions of
future works are summarized in Section V.

II. PROBLEM FORMULATION AND MODELING

The design space exploration problem considered in this
work consists of searching for three setting configurations.
Each firing j (corresponding to an execution of an action)
must be assigned to one of m parallel machines. Each firing
j has an associated processing time (referred to as weight)
pj and a group (or actor) gj . All firings belonging to the
same group (actor) must be assigned to the same machine.
If two firings belong to different groups, a communication
time wjj′ occurs between them. Since it is assumed that only
one firing can be executed on one machine at a time, for each
machine ρ a scheduling policy must be specified to decide the
execution order. The scheduling must respect the precedence
orders, including the communication time, if relevant. Each

interconnecting buffer b must be assigned with a finite size
Bb. These sizes are taken into account during the scheduling
and a firing j can be chosen for execution (js = j) only if
the sum of tokens currently present in its outgoing buffer(s)
(qb) and the tokens produced by the firing j does not exceed
the specified buffer size. The objective of specifying these
configuration settings is to maximize the throughput, or, in
other words, minimize the termination time of the very last
firing. Hence, the objective function assigned to this opti-
mization problem can be defined as min(Tend(jlast)), where
the decision variables involve the partitioning of every firing
Kp(j), the scheduling inside each machine Ks = {j, j′, . . .}
and the buffer size specification for each buffer Kb(b) = Bb.
The following constraints are defined:
• Group: gj = gj′ ⇒ Kp(j) = Kp(j′)
• Precedence: j ≺ j′ ⇒ Tstart(j

′) ≥ Tend(j)
• Buffer capacity: js = j ⇒ Σqb + tokens(j) ≤ Bb

The optimization problem to be solved is multidimensional,
furthermore, the configurations are closely dependent. For
instance, the buffer dimensioning influences the establishment
of an execution order by the buffer capacity constraint. Never-
theless, defining each of the configuration, even if disregarding
the others, can be demonstrated to be a NP-complete problem.
Finding good-quality solutions requires providing a model of a
dynamic execution describing the firings and the relationships
between then at an appropriate level of details and capable of
taking into account the entire dynamic behavior of a program.
Such a representation can be built by generating a directed
acyclic graph G, called Execution Trace Graph (ETG), where
each node, called firing, represents a single action execution
and each directed edge, called dependency, represents an
execution constraint between two firings. The processing times
pj’s and communication times wjj′ ’s are the weights assigned
to the nodes and arcs, respectively. Such a representation has
been already successfully used in order to solve a set of
optimization problems related to the design space exploration
of dynamic dataflow implementations [5], [7].

III. THROUGHPUT CONSTRAINED BUFFER MINIMIZATION

The starting point of the methodology is a deadlock-free
buffer size configuration. It constitutes a border between the
set of feasible and unfeasible design points. This configuration,
considered as close-to-minimal, is evaluated on the basis of
ETG, as described in [8]. Starting from this configuration, in
each iteration the size of only one buffer is increased. The
throughput constrained buffer minimization approach can be
implemented in two different variants, both are based on the
analysis of the critical path (cp) of the design, which is defined
as the longest path between the start of the program to its
termination. Hence, it contains the firings contributing to the
longest serial part of a program execution. If a firing in the cp
requires writing to an output buffer, this buffer is considered
to be critical. If an execution of any firing is delayed because
of the insufficient space in the buffer, a blocking slot occurs.
If such a slot occurs for a firing in the cp it directly adds on
to the length of the cp and hence, affects the total execution
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time (overall data throughput). The algorithm relies on the
following properties:
• bcp: identification of a critical buffer;
• tkb: measure of the number of tokens blocked in one

blocking slot;
• timeb: measure of the duration of one blocking slot;
• bicp: determination of the number of blocking slots along

the critical path occurring throughout the execution for a
buffer;

• bi: measure of the overall number of blocking slots
occurring throughout the execution for a buffer;

These properties are tracked and extracted by means of perfor-
mance estimation using the software tool described in [9]. The
same tool is also used as an evaluation of each configuration.

A. Notion of partitioning and scheduling

As stated earlier, this work considers the problem of deter-
mining the buffer dimensions in the context of multidimen-
sional design space exploration, hence with regards to the
partitioning and scheduling configurations. Since this approach
differs from the discussed state-of-the-art approaches which
target only fully parallel executions, an example is this Section
illustrates the difference of the approach. In case of a parallel
execution which disregards the partitioning and scheduling
configurations, increasing the size of any buffer always leads
to an improvement of the performance (if a relevant blocking
slot is removed) or the execution time remains unchanged (if
an increase is not sufficient to remove a relevant blocking
slot). The case of an execution, where a given subset of actors
is executed sequentially within one processing unit, that is,
with given partitioning and scheduling configurations, it is
also affected by the presence of the scheduler. Depending on
the scheduling policy within each processing unit, actors can
be chosen for execution in a different order and the buffer
capacity constraint affects the feasibility of different schedules.
Hence, it is possible that increasing the size of a buffer might
lead to a decrease of performance, since the admissible order
of execution inside a given processing unit differs and may
result less favorable. Such situation takes place quite often,
since an increase of a given buffer affects the scheduling
eligibility of all firings requiring writing to such buffer. In
fact, only a fraction of them might be critical and executing a
non-critical firing instead of a critical one might lead to the,
mentioned earlier, drop of performance.

So as to illustrate this problem, Figure 2 presents a simple
network consisting of few actors assigned to two partitions.
The scheduling policy assumes that an actor is executed as
many times as possible and in Actor Q the action q1 has
a priority over action q2. Two scenarios are considered: (1)
all buffers have an equal size of 1, (2) buffer b1 has the
size of 2, the others of 1. Figure 3 presents the Gantt charts
obtained in both cases. It can be noticed that although in the
second scenario the buffer size configuration is larger, the
execution time has been extended by 2 units. At this stage
it must be emphasised that the likelihood of this behavior of a
network remains fully dependent on the scheduling policy and

its sensitivity to the buffer sizes. For this reason, the moves
(i.e., increases of the buffer sizes) cannot be performed blindly
and after each iteration it is mandatory to evaluate a move and
revert it if a performance decrease has occurred. Furthermore,
in each iteration instead of picking up one buffer, a ranking
of buffers must be created and in case of a necessity to revert
a move, the next buffer from the ranking is considered for an
increase.

action: p1

Actor P

action: q1

Actor Q

action: q2

b1 action: r1

Actor R

action: s1

Actor Sb2

b3

PARTITION P1 PARTITION P2

Fig. 2: Simple network with the assigned partitioning, schedul-
ing and buffer dimensioning configuration.

p1 q1 q2 p1 q1 q2

r1 s1 r1 s1
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p1 q1 q2p1 q1 q2

s1 r1 s1

PARTITION 1

PARTITION 2

2

r1

reading time

Fig. 3: Gantt charts for the execution of network from Figure 2
for the two buffer size configurations.

B. Heaviest blocking ranking
The first ranking, presented in Algorithm 1, looks for the

heaviest blocking slot along the critical path. In this context a
heaviness of a blocking slot is measured by a multiplication of
the number of tokens blocked (tkb) and the time they remained
blocked (timeb). For each buffer in the critical path (bcp)
a maximal heaviness throughout the execution is recorded
and among different critical buffers the one with the largest
corresponding heaviness is chosen. This ranking intends to
remove the most impacting sources of delay in the execution.
Having to revert a move implies considering the next buffer
from the map. Symbols p, s, b refer to partitioning, scheduling
and buffer dimension configurations, respectively.

C. Criticality ratio ranking
The second ranking, presented in Algorithm 2, calculates the

ratio between the critical blocking slots of a buffer (bicp) and
all blocking slots of this buffer (bi) throughout the execution.
Buffers with the highest ratio bicp/bi are first considered for
an increase. This ranking intends to minimize the unnecessary
increases for the firings which are not in the critical path. It
must be emphasized that for the case of both rankings, the cp
analysis has to be performed in every iteration, since changing
even one buffer size in the network can modify the execution
order and, consequently, the location of the cp.
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Data: IN: conf(p, s), ETG; OUT: conf(b)
conf(b) = minConf(ETG);
while iteration < max do

map{bcp,max(tkb ∗ timeb)} = cp(conf(p, s, b));
foreach bcp do

b∗ = max(map{bcp,max(tkb ∗ timeb)};
conf(b∗) = conf(b∗) ∗ 2;
if time∗ < time then

break;
end
else

conf(b∗) = conf(b∗)/2;
end

end
end

Algorithm 1: Heaviest blocking ranking.

Data: IN: conf(p, s), ETG; OUT: conf(b)
conf(b) = minConf(ETG);
while iteration < max do

map{bcp, 〈bicp, bi〉} = cp(conf(p, s, b));
foreach bcp do

b∗ = max(bicp/bi);
conf(b∗) = conf(b∗) ∗ 2;
if time∗ < time then

break;
end
else

conf(b∗) = conf(b∗)/2;
end

end
end

Algorithm 2: Criticality ratio ranking.

IV. EXPERIMENTAL RESULTS

This Section reports the experimental results performed for
the two variants of the throughput constrained buffer mini-
mization heuristic. Two different video applications written
in CAL Actor Language [10] have been tested: MPEG4-
SP decoder design [11] (consisting of 34 actors, 80 buffers)
and High Efficient Video Coding (HEVC) decoder [12] (con-
sisting of 22 actors, 219 buffers). The sequences used in
the experiments are a 30-frame QCIF (176x144 8-bit pixels)
Foreman bit-stream for MPEG and a 10-frame HD (1280x720
8-bit pixels) BQ Terrace bit-stream for HEVC. Basing on
the performed experiments it has been observed that good
quality configurations found for these sequences remain of
good quality also for other sequences. Different partitioning
configurations (as a part of the multidimensional exploration
process) have been established manually so that good values
of throughput are achieved for a given number of processing
units (2, 3 and 4 for MPEG4-SP and 7 for HEVC). The target
platforms used for the experiments included Intel i7-3770 CPU
with 4 cores and Intel i7-5960X CPU with 8 cores.

In order to illustrate the importance of dimensioning the

buffers for obtaining the highest throughput (close-to optimal),
the first set of results (Tables I and II) reports the throughput
obtained for both design in two cases: for the close-to-minimal
buffer size configuration (used as a starting point for the
heuristic procedure) and the extreme configuration, where to
each buffer a size equal to 218 = 262144 is assigned, dis-
regarding its real traffic. The corresponding total buffer sizes
(expressed in tokens) are indicated in the headers of the Tables.
It can be observed that the differences are remarkable for both
designs and for different partitioning configurations. Hence, it
shows the effectiveness of searching a joint optimization of
throughput and memory objective functions.

Proc. 14k 21m
4 1820 3138
3 1410 2240
2 1156 1613
1 744 1005

TABLE I: MPEG4-SP: per-
formance differences [FPS]

Proc. 93k 57m
7 53 127
6 54 130
5 57 123
4 52 121
3 51 103
2 42 79
1 41 53

TABLE II: HEVC: perfor-
mance differences [FPS]

Figures 4a-5 present the buffer size configurations generated
in different iterations of the throughput constrained buffer
minimization heuristic in its two variants. Both variants have
been executed with the same upper bound on the number of
iterations. The charts summarize the throughput with regards
to the total buffer size of each configuration. For the case of
MPEG4-SP, 4 processing units and HEVC, 7 processing units
it can be concluded that the criticality ratio ranking provides
better results, because within the same number of iterations it
leads to higher throughput values and smaller total buffer sizes.
For the other two analyzed cases, it is not possible to make
the same observation, because one variant goes more towards
higher throughput values, whereas the other one towards
smaller total buffer sizes. It can be also observed that the
partitioning configuration remains dominant over buffer size
configuration, but for each partitioning configuration buffer
dimensioning improves the solution in the range of 3-22%.

Another part of the experiments consist of using the
throughput constrained buffer minimization heuristic (heaviest
blocking variant in this case) to find a good quality buffer size
configuration using the full parallel execution, hence, explor-
ing the design space in a simpler way only with regards to the
buffer size as already attempted in the reported related works.
It has been checked if the solutions obtained in this setting
can be exploited also when the other two configurations are
included. As shown in Figure 6, the throughput of the solutions
resulting from a single dimension exploration (parallel-based
analysis) are by far providing worse results than the results
obtained by the solutions resulting from a multidimensional
exploration (partitioned-based analysis). They do not form a
monotonic curve and they rapidly converge to a local optimum.
The same Figure reports also the entire curve of solutions,
that is, when the throughput constrained buffer minimization is
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(a) 2 processing units.
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(b) 3 processing units.
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(c) 4 processing units.

Fig. 4: MPEG4-SP decoder

executed without any upper bound on the number of iterations
and eventually converges to an approximation of an infinite
buffer size. The approximation of an infinite buffer size is
obtained by continuously doubling the size of all buffers in the
network till no more performance improvement is achieved.
It can be clearly observed that the solutions obtained with
the throughput constrained buffer minimization yield much
higher throughput values for much smaller overall buffer sizes.
The reference point in the Figure is the initial deadlock-free
configuration.
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Fig. 5: HEVC decoder: 7 processing units.
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Fig. 6: Throughput constrained buffer minimization vs in-
finite buffer size approximation and parallel-based analysis:
MPEG4-SP decoder, 3 processing units, heaviest blocking
ranking.

V. CONCLUSION

The paper describes two variants of a heuristic methodology
for dimensioning buffer sizes based on a multidimensional
design space exploration process of dynamic dataflow imple-
mentations. The objective of the algorithm is to determine

solutions that jointly maximize the data throughput for a
minimal memory resources usage. The approach employing
two variants has been validated by different dynamic dataflow
designs characterized by high levels of complexity and ex-
ecuted on a real processing platform, in which the number
of processing units is significantly smaller than the number
of actors in the network. The obtained high quality results
show the effectiveness of the throughput constrained buffer
minimization algorithm based on an accurate model of the
dataflow execution and on a multidimensional representa-
tion and exploration of the design space. Among possible
improvements of the design space exploration methodology,
an interesting option is to study the performance decreases
occurring in correspondence of some buffer size increases to
investigate if they can be avoided by modeling the worst-
case execution scenario or predicting the actual choices of
the scheduler according to the implemented policy.

REFERENCES

[1] S. Bhattacharyya, P. Murthy, and E. Lee, Software synthesis from
dataflow graphs. Springer Science & Business Media, 2012, vol. 360.

[2] E. Lee and T. Parks, “Dataflow process networks,” in Proceedings of
the IEEE, 1995, pp. 773–799.

[3] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping applications
to tiled multiprocessor embedded systems,” in Seventh International
Conference on Application of Concurrency to System Desig. IEEE,
2007, pp. 29–40.

[4] G. Kahn, “The semantics of simple language for parallel programming,”
IFIP Congress, 1974.

[5] J. Castrillon, R. Leupers, and G. Ascheid, “MAPS: Mapping concurrent
dataflow applications to heterogeneous MPSoCs,” IEEE Transactions on
Industrial Informatics, pp. 527 – 545, 2013.

[6] S. Casale-Brunet, M. Mattavelli, and J. W. Janneck, “Buffer optimization
based on critical path analysis of a dataflow program design,” in Circuits
and Systems (ISCAS), 2013 IEEE International Symposium on. IEEE,
2013, pp. 1384–1387.

[7] J. Janneck, I. Miller, and D. Parlour, “Profiling dataflow programs,” in
Multimedia and Expo, 2008 IEEE International Conference on, Jun.
2008, pp. 1065–1068.

[8] T. Parks, “Bounded scheduling of process networks.” PhD Thesis at
University of California at Berkeley, USA, 1995.

[9] M. Michalska, S. Casale-Brunet, E. Bezati, and M. Mattavelli, “High-
precision performance estimation of dynamic dataflow programs,” 10th
International Symposium on Embedded Multicore/Many-core Systems on
Chip, 2016.

[10] J. Eker and J. W. Janneck, CAL Language Report. UC Berkeley: Tech.
Memo UCB/ERL M03/48, 2003.

[11] E. Bezati, R. Thavot, G. Roquier, and M. Mattavelli, “High-level
dataflow design of signal processing systems for reconfigurable and
multicore heterogeneous platforms,” Journal of Real-Time Image Pro-
cessing, vol. 9, no. 1, pp. 251–262, 2014.

[12] document ITU-T Rec. H.265, I.-T. ISO/IEC 23008-2 (HEVC), and
ISO/IEC, “High Efficiency Video Coding,” 2013.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1383


