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Abstract—The linearly constrained minimum variance
(LCMV)-beamformer (BF) is a viable solution for desired source
extraction from a mixture of speakers in a noisy environment.
The performance in terms of speech distortion, interference
cancellation and noise reduction depends on the estimation of
a set of parameters. This paper presents a new mechanism
to update the parameters of the LCMV-BF. A new speech
presence probability (SPP)-based voice activity detector (VAD)
controls the noise covariance matrix update, and a speaker
position identifier (SPI) procedure controls the relative transfer
functions (RTFs) update. A postfilter is then applied to the BF
output to further attenuate the residual noise signal. A series
of experiments using real-life recordings confirm the speech
enhancement capabilities of the proposed algorithm.

I. INTRODUCTION

Enhancing noisy signals, even if recorded in low echoic
enclosure, is a cumbersome task, due to the co-existence
of interfering speakers and background noise contaminating
the desired speaker. In this work, we focus on a multi-
microphone solution for extracting the desired speaker from a
noisy mixture of multiple speakers.

Beamforming is a widely-used method for speech enhance-
ment using microphone arrays [1]. A comprehensive overview
of various speech enhancement and source extraction algo-
rithms is presented in [2]. The minimum variance distortion-
less response (MVDR)-BF [3], [4] steers a beam towards the
desired source such that the desired signal remains undistorted
while minimizing the other noise signals. Yet, if interfering
speaker is active and a background noise is also present,
the MVDR-BF might not effectively mitigate an interfering
speaker.

The LCMV-BF was successfully applied in speech enhan-
cement tasks with multiple signals of interest [5]. The LCMV
criterion minimizes the noise power at the BF output while
satisfying a set of linear constrains, such that the desired
source is maintained while the interfering signals are blocked.
The LCMV-BF and the MVDR-BF can be designed by using
the RTFs1 [4], [5], rather than a simple steering vector, which
is based on the time difference of arrival (TDOA) between
microphone pairs, to guarantee sufficiently high performance
measures in a wide range of reverberation levels.

1The RTF is defined as the ratio of the two acoustic transfer functions
(ATFs) relating a source signal and a pair of microphones

There are many scenarios for which both the desired speaker
and the interfering speakers are located in approximately
fixed positions, e.g. around a table in a conference room.
Nordholm et al. [6], [7] proposed to use either the MVDR-BF,
implemented in a general sidelobe canceller (GSC) structure,
or the multichannel Wiener filter to extract a single desired
source. Both solutions are only capable of suppressing the
background noise and are not aiming at the cancellation of
a competing speaker. Calibration stage may be beneficial if
the speakers’ positions are approximately constant. In [8], the
authors used recorded signals in the calibration stage in order
to find the BF parameters, and in the test phase they used
a “master-slave” structure in which the BF weights of the
“master” BF, applied to the real signals, are copied from the
“slave” BF, learned from the pre-recorded signals.

The LCMV-BF is a more suitable solution in multiple
concurrent speakers scenarios. To apply the LCMV-BF, it
is necessary to estimate the RTFs and the noise covariance
matrix. In this paper, we present a practical end-to-end imple-
mentation of a multichannel speech enhancement system based
on the LCMV beamformer and a post-processing stage. A re-
cently proposed neural network mixture-maximum (NN-MM)
algorithm [9] is utilized to derive a voice activity detector
(VAD). A new speaker position identifier (SPI) is proposed
based on a pre-trained RTF library. Finally, the NN-MM
algorithm is applied to the LCMV output as a postfilter.

II. METHOD

A. Problem Formulation

Consider an array with M microphones in a predefined fixed
position. The array captures a desired speaker contaminated by
interfering speaker and stationary background noise. Each of
the involved signals undergo filtering by the acoustic impulse
response (AIR) before being picked up by the microphones. In
the time-domain the signal received by the m-th microphone
is given by:

zm(n) = sd(n) ∗ hdm(n) + si(n) ∗ him(n) + vm(n) (1)

where sd(n), si(n) and vm(n) are the desired source, the
interfering source and the stationary background noise, re-
spectively. In real-life scenarios more than two speakers can be
simultaneously active. In this paper, for simplicity, we focus
on the two speakers scenario. The AIR between the desired
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speaker and the m-th microphone is hdm(n) and similarly, the
AIR between the interfering source and the m-th microphone
is him(n). In the short-time Fourier transform (STFT) domain
zm(n) can be stated as:

zm(l, k) = sd(l, k)·hdm(l, k)+si(l, k)·him(l, k)+vm(l, k) (2)

where l and k are the time-frame and the frequency indexes,
respectively. The terms hdm(l, k) and him(l, k) are the ATFs,
defined as the Fourier transform of the corresponding AIRs.
The received signals in (2) can be conveniently formulated in
a vector notation:

z(l, k) =hd(l, k)sd(l, k) + hi(l, k)si(l, k) + vm(l, k)

=H(l, k)s(l, k) + v(l, k)
(3)

where:
z(l, k) = [z1(l, k), . . . , zM (l, k)]T

v(l, k) = [v1(l, k), . . . , vM (l, k)]T

hd(l, k) = [hd1(l, k), . . . ,dM (l, k)]T

hi(l, k) = [hi1(l, k), . . . ,iM (l, k)]T

H(l, k) = [hd(l, k),hi(l, k)]

s(l, k) = [sd(l, k), si(l, k)]T .

(4)

Assuming the desired speech signals, the interference and the
noise signals are uncorrelated, the correlation matrix of the
received signals is given by:

Φzz(l, k) = Φdd(l, k) + Φii(l, k) + Φvv(l, k) (5)

with:

Φdd(l, k) =
[
σd(l, k)]2hd(l, k)[hd(l, k)

]H
Φii(l, k) =

[
σi(l, k)]2hi(l, k)[hi(l, k)

]H
Φvv(k) =σv

2IM×M

(6)

and (·)H is the conjugate-transpose operation.

B. System overview

In this paper, we propose a new control mechanism for the
update of the LCMV-BF parameters. The noise covariance
matrix is initialized by averaging the first frames of the
utterance, assumed to be noise-only frames. The NN-MM
algorithm [9] is then applied to the reference microphone to
extract an SPP map. A VAD is calculated based on the SPP
detector and used to control the noise estimation update. In
the calibration stage, an RTF library, consisting of a specific
RTF for each position, is calculated. In the test stage, the
RTFs-matrix is initialized with the RTFs of this library. A
new scheme for SPI is also proposed to classify speech-active
frames to be either associated with the desired or interfering
sources. The classification results of the SPI control the RTFs-
matrix update. Finally, the LCMV is applied to the noisy input,
followed by a postfilter based on the NN-MM algorithm [9].

C. Linearly Constrained Minimum Variance

In this work, we are interested in extracting the desired spea-
ker from the noisy signal, while suppressing the interference
signal. For that, we are applying a BF w(l, k) to the noisy
signal z(l, k). The BF output ŝd(l, k) is given by:

ŝd(l, k) = wH(l, k)z(l, k) (7)

where w(l, k) = [w1(l, k), . . . , wM (l, k)]T .
The filters are set to satisfy the LCMV criterion with

multiple constraints [10]:

w(l, k) = argmin
w

{
wH(l, k)Φvvw(l.k)

}
subject to CH(l, k)w(l, k) = g(l, k)

(8)

where g(l, k) is the desired response, set in our case to [1, 0]T ,
and

C(l, k) = [cd(l, k), ci(l, k)] (9)

is the RTFs-matrix, with

cd(l, k) =

[
hd1(l, k)

hdref(l, k)
,
hd2(l, k)

hdref(l, k)
, . . . ,

hdM (l, k)

hdref(l, k)

]T
(10)

and

ci(l, k) =

[
hi1(l, k)

hiref(l, k)
,
hi2(l, k)

hiref(l, k)
, . . . ,

hiM (l, k)

hiref(l, k)

]T
(11)

where ‘ref’ is the reference microphone. The well-known
solution to (8) is given by,

wLCMV(l, k) = Φ−1
vv (l, k)C(l, k)×

[CH(l, k)Φ−1
vv (l, k)C(l, k)]−1g(l, k). (12)

To calculate (12), an estimate of the RTFs-matrix C(l, k) and
the noise correlation matrix Φvv are required.

D. Noise estimation

In order to estimate Φvv , we assume that there are time
segments for which none of the speakers is active. These
segments are utilized for estimating the stationary noise power
spectral density (PSD). Define

[
lstart
v , lstop

v

]
as a noise-only time

segment and initialize the corresponding PSD matrix:

Φ̂vv(k) =
1

lstop
v − lstart

v

lstop
v −1∑
l=lstart

v

z(l, k)zH(l, k). (13)

We assume that the first 0.5 sec can be utilized for initializing
Φvv , and discuss a VAD-based adaptation scheme in Sec. III.

E. RTF estimation

This section is dedicated to the estimation of the RTFs-
matrix C(l, k) (9). In static scenarios, the RTFs of the desired
and the interfering sources can be pre-estimated in a calibra-
tion stage. Under the assumption that the sources’ positions
are approximately fixed, their identity as either desired or
interference source can be determined. The RTFs library can
be constructed off-line using different speakers and utterances
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than used in the test stage. As the match between the pre-
estimated RTFs and the corresponding RTFs of the actual
environment is presumably high, good identification results
may be obtained.

It is assumed that there are time-frames in which only
one source (either desired or interference) is active. These
frames, [lstart, lstop], can be identified and classified to desi-
red/interference segment as described in Sec. III. This segment
can then be used for estimating the corresponding RTF. This
assumption, although restrictive, can be met in realistic scena-
rios, for which double-talk scenarios only rarely occurs. Now,
applying the generalized eigenvalue decomposition (GEVD)
to Φ̂zz(l, k) and the stationary-noise PSD matrix Φ̂vv(l, k) we
have:

Φ̂zz(l, k) = λ(k)Φ̂vv(l, k)f(k) (14)

where λ(k) is the generalized-eigenvalue, f(k) is the corre-
sponding generalized-eigenvector and Φ̂zz(l, k) is the corre-
lation matrix estimated from the frames [lstart, lstop] and (13).
Under the assumption that only one speaker is active at this
segment, the eigenvector associated with the largest eigenvalue
is a scaled version of an RTF c(l, k) ∈ {cd(l, k), ci(l, k)}.
Therefore, we normalize the result to obtain a proper RTF:

ĉ(l, k) =
Φ̂vv(l, k)f(k)[

Φ̂vv(l, k)f(k)
]

ref

. (15)

F. DNN-based SPP post filter

The output of the BF ŝd(l, k) (7) is a single channel
signal contaminated by residual noise. We apply the NN-MM
algorithm [9] to the BF output to enhance the noisy signal.
The NN-MM algorithm utilizes a phoneme-based Mixture of
Gaussians (MoG) where each Gaussian represents a different
phoneme, and a trained deep neural network (DNN) phoneme-
classifier, which classifies time-frames to one of the phonemes
in the phoneme-based MoG. By merging the generative MoG
and the discriminative DNN, the NN-MM constructs a time-
frequency SPP map ρ(l, k). A soft spectral attenuation, which
was found useful for speech enhancement [9], [11], is then
applied to the BF output:

s̃d(l, k) = ŝd(l, k)− (1− ρ(l, k)) · β (16)

where β is the soft attenuation level. Note, that (16) is carried
out in the log-spectrum domain.

III. THE LCMV CONTROL MECHANISMS

Until now it was assumed that the time-segments in
which each speaker is active and their classification as desi-
red/interference source are known. In this section we describe
control mechanisms that will be utilized to infer this informa-
tion from the measured data in real-life scenarios.

A. SPP-based VAD

As was mentioned above, the noise PSD matrix Φvv(l, k)
is a crucial component in the LCMV BF design. In (13) the
time-frames in which only the background noise is active are
required. Here, we propose an SPP-based VAD to determine
these noise-only frames. The noisy signal from the reference
microphone, denoted zref(l, k), is used as the input to the
NN-MM algorithm. The NN-MM calculates the SPP of the
noisy signal, ρ(l, k). The probabilities are then aggregated
across frequencies to yield a VAD decision per frame:

V (l) =

{
1

∑
k ρ(l, k) > Tr

0
∑

k ρ(l, k) ≤ Tr
(17)

where Tr is the threshold value. In our implementation we set
Tr = NDFT/4, where NDFT is the STFT frame-length.

Note that the proposed VAD is set to the value ‘1’ if
any speech source is active, regardless of the identity of this
source. Given that the current frame is noise-dominant, the
noise estimation can be recursively updated:

Φvv(l, k) = α ·Φvv(l− 1, k) + (1−α) · z(l, k)zH(l, k) (18)

where α is the learning rate factor. Otherwise, no noise
adaptation is applied.

B. Speaker position identification based on pre-trained RTFs

An accurate RTF estimation is a crucial component in
the BF design. For that, time-frames dominated by a single
speaker should be determined. Given the VAD in (17), we
know whether any speech source is active or not. Yet, we do
not know whether the desired speaker, the interference speaker
or both are active.

In our scenario, the speakers position are fixed, and the
reverberation level is low. The fixed positions makes the pre-
training stage feasible. Consequently, in the calibration stage
an RTF library, which consists of a specific RTF for each po-
sition, is measured. We set the components of the RTF library
to cs(k), s = 1, . . . , Ns, where Ns is the number of possible
positions (in our experiments Ns = 4). This stage is only
carried out once and does not recur. The RTFs-matrix (9), is
then initialized with the components from the library, without
loss of generality it is set to C(k) =

[
c1(k), c4(k)

]
. At the

test phase, given speech-active frames, an RTF is estimated
using (15). The estimated RTF ĉ(l, k) is then projected to
each component of the RTF library, by calculating the cosine
distance:

Di(l, k) =

∣∣ĉ(l, k)H · ci(k)
∣∣

‖ĉ(l, k)‖ · ‖ci(k)‖
. (19)

The fact that we deal with low reverberation level makes
the distance measure (19) a valid affinity measure between
impulse responses (see discussion in [12].). Under the assump-
tion that only one speaker is active, the position of the active
speaker is determined by I(l):

I(l) = argmax
i

∑
k

Di(l, k). (20)
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Given the speaker position, the RTFs-matrix (9) is updated
with the current RTF. Note, that if both speakers are active,
the cosine distance will be smaller than 1 for each position.
Consequently, these time-frames will not be utilized for upda-
ting the RTFs-matrix. The algorithm is summarized in Alg. 1.

Algorithm 1: Speech enhancement algorithm.
Initialization:
Find Φvv based on the first 0.5sec. (13).
Set C(l, k) =

[
c1(l, k), c4(l, k)

]
(9).

Input:
Noisy input z(l, k).
for l = 1 : Nseg do

Calculate SPP-based VAD utilizing NN-MM (17).
if Noise then

Update noise estimation Φvv (18).
end
else if Speaker active then

1) Estimate RTF of the current speaker (15).
2) Calculate cosine distance (19).
3) Determine which speaker is active (20):

if Desired speaker then
Update ĉd(l, k) in (9).

end
else if Interfering speaker then

Update ĉi(l, k) in (9).
end
else if Two speakers active then

continue.
end

end
Enhancement:

Find wLCMV (12).
Apply beamforming on the noisy input (7).
Apply NN-MM to the LCMV output (16).

end

IV. EXPERIMENTAL STUDY

A. Experiment setup

The algorithm performance was evaluated by a set of
experiments using a recording campaign carried out in a low
echoic enclosure. There are four positions in the experiment,
denoted 1, 2, 3, 4. Microphone array consisting of seven omni-
directional microphones arranged in U-shape was used.

In order to control the signal to noise ratio (SNR) and
the signal to interfering ratio (SIR), the desired speaker, the
interfering speakers and the background noise were separately
recorded. The desired speaker was located at position #1. The
fifth microphone was chosen to be the reference microphone.
The other positions were occupied with the interfering spea-
ker. The background noise was recorded separately. For the
recording campaign, we used 6 speakers (3 male and 3 female
speakers) and recorded 1800 utterances. The desired speaker
was counting, while the interfering speakers were reading from

TABLE I: Experiment time-line

Time [sec] 0-0.5 0.5-3 3-6 6-9 9-16 16-18
Desired speaker 0 1 0 0 1 0
Interfering speaker 0 0 1 0 1 0
Background noise 1 1 1 1 1 1

(a) SNRin = -5dB.

(b) SNRin = 10dB.
Fig. 1: SNRout and SIRout as a function of SIRin.

the Harvard database [13]. The separate recordings were then
used to synthesize real-life scenarios. The time-line for each
scenario is described in Table I, and explained in the sequel.
At 0÷0.5sec the speakers are inactive, at 0.5÷3sec the desired
speaker speaks alone, at 3÷6sec only the interference speaker
is active, at 6÷9sec the sources are not active and at 9÷16sec
the desired speaker and the interfering speaker are all active.
Note, that the background noise is present during the entire
utterance.

B. Experimental results

To evaluate the enhancement capabilities, we evaluated the
SNRout and the SIRout at the output of the algorithm as a
function of SIRin at the input to the algorithm in the range
{−5, 0, 5, 10, 15}dB for SNRin in the range {−5, 0, 5, 10}dB.
In Fig. 1 we present the results obtained by averaging of 15
signals for each scenario. Due to space constrains we only pre-
sent the results for SNRin=-5,10dB. The resulting SNRout and
SIRout are presented with and without the postfilter. It is easily
verified that the SIRout is approximately linearly growing with
SIRin. Additionally, the NN-MM postfilter significantly im-
proves the SNRout. This is consistent for all levels of SNRin.
Interestingly, the postfilter also improves SIRout. This may
be attributed to the spectral shape distortion introduced to the
interference source resulting by the application of the LCMV-
BF. To further evaluate the performance of the algorithm we
set SIRin to 5dB, and the SNRin to 2dB. The desired speaker
was placed in the position #1, and the interfering speaker
was placed in position #3. The noisy STFT at the reference
microphone zref is presented in Fig. 2. The decisions of the
SPP-based VAD are marked with a red line on top of the time
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Fig. 2: Noisy signal at microphone #5, selected as the reference
microphone.

(a) Only desired speaker is active.

(b) Desired and interfering speakers are jointly active.
Fig. 3: SPI decisions per frequency.

signal. Note, that the VAD accurately tracks the speech-active
frames. Additionally, it can be easily verified that when both
the desired and the interfering speakers are active, the VAD
is on as well. In order to evaluate the proposed SPI scheme,
we estimated the RTF based on time-frames classified by the
VAD as speech-active. Define I(l, k) = argmaxiDi(l, k) the
frequency-wise speaker position identifier. Figure 3 depicts
these decisions for a specific set of speech time-frames. We
first analyzed frames from the segment [0÷ 3]sec in which the
desired speaker is active. Fig. 3a illustrates the frequency-wise
SPI decisions. It is clear that, in this case, most frequencies
are associated with position #1, which is occupied by the
desired speaker with only low percentage of misclassification.
The aggregated measure in (20) will therefore identify the
first position as the source of the estimated RTF. We further
examined time-frames where both speakers are active. It can be
easily deduced from Fig. 3b, that in this segment I(l, k) is not
dominated by any position and hence will not be determined
as either desired or interference speaker, and consequently no
valid RTF can be estimated.

Finally, the estimated desired signal, s̃(l, k) (16), is depicted
in Fig. 4. First, the BF suppresses the interfering speaker
power by approximately 20dB. The NN-MM algorithm was
then applied to attenuate the residual background noise. It is
evident that the background noise was significantly suppressed
by the joint application of the BF and the postfilter.

Fig. 4: The estimated signal after the proposed algorithm s̃.

V. CONCLUSION

In this paper, a system for speaker extraction and noise
reduction was presented. New SPP-based VAD controls the
noise covariance matrix update, and an SPI method, which is
based on an RTF library, controls the RTFs-matrix update. The
updated LCMV-BF was then applied to enhance the speech.
The NN-MM algorithm was used as a postfilter to attenuate the
residual noise. The proposed algorithm was examined using
real-life recordings in a low-reverberant enclosure, and proved
to perform well in a wide range of SNR and SIR levels.
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