
Residual Neural Networks for Speech Recognition
Hari Krishna Vydana, Anil Kumar Vuppala
Speech and Vision Laboratory, LTRC, KCIS

International Institute of Information Technology, Hyderabad, India
hari.vydana@research.iiit.ac.in, anil.vuppala@iiit.ac.in

Abstract—Recent developments in deep learning methods have
greatly influenced the performances of speech recognition sys-
tems. In a Hidden Markov model-Deep neural network (HMM-
DNN) based speech recognition system, DNNs have been em-
ployed to model senones (context dependent states of HMM),
where HMMs capture the temporal relations among senones. Due
to the use of more deeper networks significant improvement in the
performances has been observed and developing deep learning
methods to train more deeper architectures has gained a lot of
scientific interest. Optimizing a deeper network is more complex
task than to optimize a less deeper network, but recently residual
network have exhibited a capability to train a very deep neural
network architectures and are not prone to vanishing/exploding
gradient problems. In this work, the effectiveness of residual
networks have been explored for of speech recognition. Along
with the depth of the residual network, the criticality of width of
the residual network has also been studied. It has been observed
that at higher depth, width of the networks is also a crucial
parameter for attaining significant improvements. A 14-hour
subset of WSJ corpus is used for training the speech recognition
systems, it has been observed that the residual networks have
shown much ease in convergence even with a depth much higher
than the deep neural network. In this work, using residual
networks an absolute reduction of 0.4 in WER error rates (8%
reduction in the relative error) is attained compared to the best
performing deep neural network.

I. INTRODUCTION

Traditional speech recognition systems has majorly relied
on the paradigm of “beads of the string”, which considers
words to be composed of phones and phones are composed
by sub-phone acoustic units (senones). In a Hidden Markov
model-Gaussian Mixture Models (HMM-GMM) based speech
recognition system, senones are modeled by GMMs as the
states of HMM [1] and HMMs model the temporal relations
among senones. Though GMMs have many advantageous
properties such as faster convergence and capability to model
any probability distribution with enough number of compo-
nents, but GMMs cannot learn the data on the nonlinear
manifolds [2]. To alleviate this problem, neural networks with
single hidden layer are used to model the states of HMM (ie.,
senonoes) instead of a GMM. Recently DNNs are employed
to model the senones has shown a significant improvement in
speech recognition systems [2].

The development of deep learning methodologies have
greatly influenced the performances of speech recognition sys-
tems. Deep learning methodologies majorly aim learning the
feature hierarchies in which lower level features are composed
to form a higher level representations. To learn better represen-
tations a more deeper network has to be trained. Superiority

of networks with increased depth has been studied for various
tasks such as speech recognition, language processing and
AI are described in [3]. Training and optimizing a deeper
network is more complicated than training and optimization of
a shallow network [4]. The difficulties in training more deeper
architectures with the sigmoid activation units and random
initializations have been studied in [5]. Recent developments
in deep learning methodologies can be majorly consolidated
as development on learning methodologies, initializations and
activation functions for training more deeper architectures.
Though a significant amount of progress has been achieved
in reducing the effect of exploding/vanishing gradients by the
use of activation functions such as ReLU [6], PReLU [7] and
normalized initializations [7] and normalizations like Batch-
normalization [8], but optimizing a neural network with very
deep architecture is an open problem and there have been many
attempts to train a deep neural networks with plain stochastic
gradient decent (SGD). Learning strategies like curriculum
learning, continuation methods [9], mollifying networks [10]
and use of noisy activation functions [11] have been studied
to aid the optimization of a highly non convex objective
functions.

Initial attempts to train the deep networks were studied
in deep supervision [12]. In deep supervision, an auxiliary
loss is forked in the intermediate layers, to provide a short
path for back-propagating the gradients, the forked layers
have two gradients i.e., from main loss and auxiliary loss.
Despite the better performance of deep supervision, irrelevance
of auxiliary loss at test time, mismatch between the training
and testing objective functions is a major drawback. Recent
architectures called Highway networks have been successful
in training neural network architectures with arbitrary depth
using SGD. Highway networks are characterized by pathways
which allow unimpeded information flow across the layers
of a network known as highways of information [4]. In a
highway network a data-driven gated mechanism is employed
to control the pathways of information and in a way they
decide whether the layer should learn the mapping function or
its residual counter part. Though the highway networks have
provided capability to train an arbitrary depth architecture but
improvements in the performance were not significantly high
even for at 100 layer depth. Further studies have shown that
the replacing the data driven gating mechanism of highway
networks with an identity mapping has given rise to a new
class of networks called residual networks (Resnets) [13]. The
residual networks are enriched with advantageous properties
such as capability to train networks of any depth with SGD.
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Unlike Highway networks strict use of the identity mapping
across the information highways makes the residual network
to learn only residual mappings and network of any depth
is not prone to vanishing and exploding gradients [14]. The
effectiveness of identity mapping for a residual network and
their ease in training has been studied in [15]. Unlike the Deep
supervision where axillary loss is forked at intermediate layer
to reduce the effective depth while training the networks, in a
residual network the identity mappings provide a better way
of reducing the effective depth. Due to this mechanism of
reducing the effective depth, a residual neural network has
shown better ease in convergence and better generalization.
This motivated us to study the influence of residual networks
and their effectiveness for the task of speech recognition.

Apart from increasing the depth of the network, widening
the networks have also shown better performance on image
classification tasks [16]. In this study, the effectiveness of
increasing width of the network along with with residual con-
nections has been explored for the task of speech recognition.
Unlike the other classification tasks speech recognition task
has to handle many variabilities speech, speaker and emotion
variabilities that are naturally expected to exist in speech
data, so the classifier should be capable of exhibiting better
generalization to these variabilities. Apart from the variabilities
the number of classes in a speech recognition system is huge
ie., it has to classify input frames to senones which are around
2000 even after state tieing [2]. During the study, the residual
networks (Resnets) are employed to model the senones ie.,
probability of the present frame belonging to a senone is used
as the emission probability of HMM.

The main focus of the study is presented below i.e.,
• Exploring the use of residual networks for the task of

speech recognition
• Analyzing the effect of widening the residual blocks for

the task of speech recognition
• Comparing the performance and convergence properties

of residual and wide-residual networks for speech recog-
nition.

The remaining paper is organized as follows: The database
used and the architecture of residual network used in this
study is described in section 2 and performance of the speech
recognition systems developed using deep network (HMM-8-
DNN) and a residual networks(HMM-Resnet) are compared
in section 3. Section 4 gives the conclusion and future scope
of the work.

II. SPEECH RECOGNITION FRAMEWORK USED IN THIS
STUDY

A. Database

Speech data from Wall Street Journal corpus (WSJ) [17]
has been used during the study. In this study, a 14 hrs
subset of WSJ corpus (si284-set) for training the speech
recognition systems, eval-92 and dev-93 sets are used as test
sets. Alignments for the training data are obtained form HMM-
GMM based tri-phone speech recognition system, and these
are used for training the deep neural networks.

B. Feature Extraction

Mel-frequency cepstral coefficients (MFCC) extracted form
speech signal are spliced over 9 frames (±4) in time to form a
117 dimensional feature vector. A linear discriminant analysis
(LDA) is used to make this 117 dimensional input vector
to a 40 dimensional vector and a feature-space maximum
likelihood linear regression (fMLLR) transform is used for
speaker variability normalization. The speaker normalized 40
dimensional vector is spliced in time over 11 frames (±5)
resulting a 440 dimensional feature vector. This entire feature
extraction is performed using kaldi-pdnn toolkit [18].

C. Architecture

A deep neural network with six hidden layers comprising of
ReLU units i.e., (440R-1024R-1024R-1024R-1024R-1024R-
1024R-1991S) is used as a baseline system and this network
is termed as 8-DNN in this study. The categorical entropy of
the outputs is used as the loss function. ADADELTA [19] is
used as an optimizer. The dropout of 0.1 is used for all the
hidden layers [20]. During the work, a continuous increase in
the validation loss for five successive epochs is considered as
an early stopping criterion.

D. Residual Neural Network architecture

In this work, a HMM-Resnet architecture for speech recog-
nition has been explored. The posterior probability obtained
for a frame of speech using a residual network (resnet) is
used as the emission probability of HMMs. If H(x) is the
mapping learned by feed forward deep neural network where
x is input, then the network can also learn H(x)−x mapping,
but with a different ease of learning [13]. Thus the residual
function (F (x)) thus becomes F (x) := H(x)−x, the residual
network is implemented just as any deep neural network with
a constraint H(x) := F (x) + x.

Fig. 2: Residual block used in this study.

In this work, the residual blocks presented in Fig. 2 is
termed as Res. In the residual block (Res) the first weight
layer contains W1-ReLU units and the second weight layer
contains W2-ReLU units. During the course of study, the
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Fig. 1: Comparing the performance of speech recognition systems developed using 8-DNN and residual network in terms of
frame error rate. Figures are generated from WSJ corpus mentioned in subsection II-A

second weight layer W2 always has the fixed number of units
which is equal to the dimension of input (440), so that the
output of weight layer W2 is directly added to input with out
any zero-padding. A dropout regularization is used in-spite of
Batch normalization, a dropout factor of 0.1 is used with all
the residual blocks.

III. RESIDUAL NEURAL NETWORK FOR SPEECH
RECOGNITION

In this work, HMM-Resnet hybrid systems have been ex-
plored for speech recognition, in which a residual network is
employed for modeling the senones and the temporal sequence
of senones is modeled using a HMM model. The residual
network architectures are formed by stacking the residual
blocks shown in Fig.2 with weight layers W1, W2 comprising
of 440 units. During the study, 5% of the training set is
held-out as validation set and frame error rates are computed
over that set. During the study, residual network architecture
formed by stacking ’n’ residual blocks followed by a softmax
is termed as nRes architecture. The performance of speech
recognition systems developed using residual networks of
varying depth (6Res, 8Res and 10Res) is presented in terms
of frame error rate in Fig.1.

From Fig.1.(a), it can be observed that residual networks
has shown good ease in training. The performance of deep
neural network formed by stacking several fully connected
layers (8-DNN) is shown by a solid line. From Fig.1.(b)
the performance of residual networks is slightly better than
the 8-DNN. The performance of speech recognition systems
developed using residual networks in terms of word error rate
(WER) is presented in Table.I. The WERs are reported on dev-
93 and eval-92 sets. As the dev-93 set shares the same data
environment, vocabulary size as training set a over-fit model
appears to perform better, so in this study the performance on

TABLE I: Performance of HMM-DNN and HMM-
Resnet(6Res, 8Res and 10Res) speech recognition systems
in terms of Word error rate (WER).

Test sets
stacked
network 6Res 8Res 10Res

eval-92 5.19 5.07 4.86 5.14

dev-93 8.72 8.68 8.56 8.51

eval-92 is considered as a measure of networks generalization
capability.

Row 1 of Table.I are the various network architectures and
row 2, 3 are the WERs of various speech recognition systems
on eval-92 and dev-93 sets respectively. As the depth of the
network is increased from 6Res to 8Res an improvement in
the performance can be observed from columns 2, 3 of Table.I.
Network with 10Res has exhibited more over-fitting nature
compared to the 6Res, 8Res architectures can be noted form
Fig.1(a),(b) and the similar nature is also apparent in Table.I.
Though the 8-DNN, residual networks (6Res, 8Res and
10Res) has exhibited similar performance on the validation set
which can be seen from Figure .1, but the residual networks
have exhibited better generalization than the 8-DNN which
can be noted in Table.I.

In this study, the criticality of width of the residual layers
has been explored and the networks formed by widening the
residual layers are termed as wide-residual networks. In this
study, the wide-residual networks are designed by stacking
the residual blocks presented in Fig.I with weight layer W1
comprising of 1024 units and weight W2 comprises of 440
units. The performance of wide-residual networks in terms of
frame error rate is presented in Fig.3.

From Fig.3, it can noted that the width of the networks
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Fig. 3: Performance of speech recognition systems developed using 8-DNN and wide-residual networks in terms of frame error
rate. Figures are generated from WSJ corpus mentioned in subsection II-A

has shown better ease in convergence. The width of the
residual blocks is also a critical parameter along with the
depth of the network, with the increase in the width the
performance of wide residual network on validation dataset
has significantly improved. The performance of wide-residual
networks is significantly higher than residual networks and the
8-DNN. As the depth of wide-residual network is increased
from 4 to 10 layers an increase in the performance is observed
but as the depth of the network is further increased to 12
layers an over-fit in the model is observed. The performance
of speech recognition developed using wide-residual networks
is presented in terms of WERs in Table.II.

TABLE II: Performance of wide-residual networks for speech
recognition.

Test sets
stacked
network W-4Res W-6Res W-8Res W-10Res W-12Res

eval-92 5.19 5.12 5.07 4.94 4.77 5.05

dev-93 8.72 8.68 8.43 8.60 8.62 8.44

Row 1 of Table.II are the various speech recognition systems
developed by varying the depth of the wide-residual network.
Row 2, 3 of Table.II are the WERs on eval-92, dev-93 sets
respectively. Increasing the depth of the network from 4,10
layers the the performance speech recognition system has
increased and at 12 layer depth the networks have exhibited
an over-fitting nature and the same can be observed in terms
of WER. Though wide-residual networks have shown less
generalization capability at lower depths, at higher depths a
significant improvements in the performance can be observed.
At higher depths i.e., 10 layers the width of the network
has shown a significant impact. The residual networks, wide
residual networks have shown better generalization properties

and an absolute reduction of 0.4% (8% reduction in the relative
error ) in WER is obtained.

IV. CONCLUSION & FUTURE SCOPE

The recent developments in deep learning methodologies
have enhanced the performance of speech recognition. In a
HMM-DNN based speech recognition, where deep neural net-
works have been explored to model senones. The superiority
of the networks with increased depth has been studied for
multiple tasks. Recently there has been a many studies to train
deeper networks like highway networks, residual networks. In
this study, HMM-Resnet architectures for speech recognition
have been explored. With the increased depth, the residual
networks have exhibited better generalization and convergence
properties. In this study, HMM-Resents have shown superior
performance compared to HMM-DNN based speech recogni-
tion systems and an absolute reduction of 0.4% in WER or
8% reduction in the relative error is observed. Along with
the depth of the network, the criticality of the width of the
residual layers has been explored. Increase in width of the
residual layers along with depth have aided the convergence.
At higher depths increase in the width of the network has
attained significant improvement in the performance of speech
recognition systems. In the future studies, the other architec-
tural aspects of residual neural networks would be explored
for attaining improvements in speech recognition system.
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