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Abstract—Fully automated defect detection and classification
of automobile components are crucial for solving quality and
efficiency problems for automotive manufacturers, due to the
rising wage, production costs and warranty claims. However,
metrological deviations in form still represent unsolved problems
using state-of-the-art techniques, especially for forged or casted
components with complex geometry. In this paper, we attempt to
overcome these challenges by using an acoustic resonance testing
model that combines features extraction with defect classification
from acoustic natural vibration signals. In this case the study
doesn’t focus on typical defects like cracks but on defective
components in the sense of geometric configurations which are
out of tolerance range. With an optimal feature extraction
algorithm and a classifier training step, the proposed approach
significantly accelerates the detection speed of unacceptable
deviations in dimensions and parallely enhances the accuracy.
The main contribution of this paper is that an optimal feature
from acoustic signals is found which represents the geometric
parameters most appropriately, meanwhile, the most appropriate
classifier is obtained which significantly improves the efficiency
and accuracy in defect classification.

I. INTRODUCTION

With the accelerating pace of globalization, quality control
has been regarded as one of the most important parameters in
automobile manufacturing industry to surmount current and
future challenges. Inefficient and unreliable quality inspection
methods lead not only to a significant incremental of costs,
but also to serious failure and security risks, thus damaging
the commercial image of the components manufacturers and
supplier as well as the car manufactures. The testing of
metallic components of complex geometries still mainly relies
on visual inspection or destructive testing, which are time
consuming, expensive and require trained operators. Thus
there is a major need to replace the current methods with
automated, efficient and low-cost testing methods.

The automated sound test, which is also known as acoustic
resonance testing (ART), is a simple but robust nondestructive
test method which is mostly used in the examination of serial
parts which are produced in large quantities and with low cycle
times, e.g. forged or casted metallic parts. A big advantage of
ART compared to other volume-oriented methods is its fast
in-line quality assessment of an entire specimen within a few
seconds. The principle of ART is based on the fact that a
sample’s natural vibration behavior and its eigenfrequencies
mainly depend on geometry, structural defects and material
properties. Generally, the exact geometric dimensions and
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material properties of single parts in a serial production vary
randomly within acceptable ranges. Intolerable component
variations, like size out of standard range, leads to shifts in
eigenfrequencies. A method to differ between eigenfrequency
shifts caused by acceptable as well as intolerable variations is
required. The goal of this paper is to evaluate the possibility
of using certain spectral components, i.e. eigenfrequencies as
inputs for classifiers to decide whether sizes of simplified
connecting rod is "OK” (acceptable variations in geometry)
or "not OK” (size out of range).

The remainder of this paper is organized as follows: in
Sec. II.A, a review of state-of-the-art nondestructive testing
techniques is presented. An overview of the proposed approach
for classification of geometric defect on connecting rod is
clarified in section. II.B, while the implementation details are
provided in Sec. III. To assess the performance of the proposed
approach, a comprehensive evaluation is conducted on a well-
defined dataset using appropriate measures in Sec. IV. In the
last section, some general conclusions are presented.

II. PROPOSED APPROACH
A. Related Work

Nondestructive testing ART is a well established quality
control method. Some publications focus on the algorithms to
differentiate the influences to the acoustic vibration behavior
caused by acceptable scatter and defects respectively [1], [2].
Those approaches take advantage of simulated vibration data
of samples with a geometric complexity near to real serial
components. Other more recent publications consider different
approaches to improve the quality assessment based on natural
vibration data with the aim of identifying defect locations and
types. These publications focused only on defect detection but
ignored tolerable variations from part to part [3]-[5]. Due to
the improvement of classification algorithms and significant
advances in processing power nowadays via capable computer
hardware, more intelligent and comprehensive solutions may
be now employed to offer satisfactory and robust automated
test results.

Within this sense, some preliminary works about calculating
the geometry parameters with eigenfrequencies were intro-
duced in [6] and [7]. The eigenfrequencies calculated by finite
element method [8] are only slightly different from measured
frequencies, especially when the input data like geometry and
material information used for the calculation are sufficient
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compared to real properties of the samples [9]. Within those
contributions in [6] and [7] a similar approach was followed
using a linear regression model to estimate the exact dimen-
sions of components from their eigenfrequencies which led
to very promising results when using a sufficient number of
frequencies. However, small deviation of simulation, geometry
and material parameters might lead to bigger deviation in the
calculated geometric values (such as thickness and diameter).
How to eliminate the number of needed eigenfrequencies while
maintaining the robustness and accuracy of the model is still
an open topic.

B. Deployed Workflow

The study is based on simulated vibration data because a big
amount of samples is needed. At first, many similar samples
with marginal random geometry variations were defined. Then,
the samples’ eigenmodes and eigenfrequencies were calculated
using numerical finite element simulations. In the next step,
the feature extraction algorithm is applied to find the most
representative information of geometric parameters from the
eigenfrequencies. At last, a classifier is trained on a dataset
in terms of extracted features to separate the samples for the
samples actual size into different categories: "OK”, “under
range” and “over range”.

III. IMPLEMENTATION

In this section each stage of our proposed classification al-
gorithm is described in detail. To keep the deployed workflow
more general, all considered processing steps for classifying
the geometric defects are presented. Further information on
the evaluation of optimal features and classifiers are provided
in Sec. IV.

A. Data Generation

Fig. 1 illustrates the geometry of connecting rod with flat
and top view. Eight parameters like thickness or diameter,
which are to be separated into the above mentioned categories
(“OK”, “under range”and “over range”), are defined with
small random geometry variation. The eigenfrequencies and
eigenmodes (like shown in Fig. 2) are then calculated with
finite element simulation using a software named COMSOL
Multiphysics (version 5.1 and 5.2a). The difference between
ART measured eigenfrequencies of a manufactured component
and those from the finite element calculations were less than 3
percent for all mode shapes. Those variations can be explained
with simplifications in the finite element model respectively
not precisely known properties of the real sample, the in-
fluence of discretization when using finite element method,
measurement noise etc.

B. Feature Extraction

Feature extraction is an essential method, which has been
widely used in applications like image processing, classifica-
tion etc. to reduce the redundancy of sample data. Principal
Components Analysis and Linear Discriminant Analysis are
two of the most commonly used algorithms to conduct the
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Fig. 1. Geometry of connecting rod with flat view (upper) and top view
(lower).
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Fig. 2. Examples of eigenmodes of connecting rod with a certain geometry
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classification more simply and precisely by attempting to
projecting the samples into a lower dimensional space.

1) Principal component analysis (PCA): To solve the prob-
lem of redundant features, PCA [10] is applied to convert the
possibly correlated high-dimensional data space into a set of
linearly uncorrelated features by weighting the datasets in a
balanced way. This leads finally to more robust classifier in
general, but not necessarily to the one with best accuracy [11].

2) Linear discriminant analysis (LDA): Being similar to
PCA, LDA looks for a linear combination of variables which
best explain the data. The most obvious difference between
LDA and PCA is that the features extraction performed with
LDA is supervised (with class information). However, PCA
is label agnostic. The purpose of LDA is to find a subspace
which gathers the samples from same class and meanwhile
enlarges the margin from different classes [12] .

C. Classification

1) Support Vector Machines (SVM): SVM are one of the
standard tools for machine learning and data mining based on
advances in statistical learning theory. They work in a two step
process. The first step is the training (with representative sam-
ple data) where the support vectors are generated determining
the optimal separating hyperplane or set of hyperplanes with
the maximum distance to these support vectors. The second
step is the regression/classification of unknown data in the
feature space. A Support Vector Machine is a maximal margin
hyperplane in feature space, built by using a kernel function
in input space. In this work, the used kernel is a Gaussian
Radial-Basis Function (RBF) [13]:

K(p,q) = exp (—|lp — q|*) (1)
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where p = [p1,p2,--- ,pa] and ¢ = [q1,q2,- - ,qa] € R? are
feature vectors. The variable ~ is the width of the RBF. The
kernel function measures the similarity in feature space by
working like an inner product in this space.

2) Bag of decision trees: Decision tree is a kind of weak
classifier that has a flowchart-like structure, in which each
node stands for a “’test” on attribute and each branch represents
the outcome of the test. In the practice, overfitting is a
significant problem for decision tree, because the full growth
of a decision tree may lead to loss of generalization capability.
Bootstrap-aggregated (bagged) decision trees [14] combine the
results of many decision trees, which eliminate the influence of
overfitting and the final prediction of the compound classifier
is given as a weighted combination of individual classifier
predictions [15]:

H(d;) = sign(Shi_ycm H (d;)) 2)

where an example d; is classified with a classifier H using
a sequence of weak classifiers H,,,m = 1,...M. Parameters
ay, are determined in such way that more precise classifiers
have stronger influence on the final prediction than less precise
classifiers [15].

3) Random Forest: As an extension of bag of decision trees,
random forests [16] differs in only one way from this general
scheme: special process named “feature bagging” is applied in
the learning process to select a random subset of the features at
each candidate split. The purpose of this process is to prevent
the features, which have a strong influence to the predictor in
the training process, from causing the correlated feature space
[17].

4) Adaptive Boosting (AdaBoost): AdaBoost is a machine
learning algorithm referring to a particular method of training
a boosted classifier [18]. One of the main ideas of the
algorithm is to maintain a distribution or set of weights over
the weak classifiers (here decision tree). The initial weights
for all classifiers are set equally at first. With iterations in the
training process, each weights will be updated according to the
results wether the examples are misclassified. The weights of
incorrectly classified samples are increased so that the learning
could be focused on the misclassified samples.

IV. EVALUATION
A. Dataset and Measures

Dataset with 10000 samples for training and 2000 samples
for evaluation were generated, which contains the actual sizes
and the corresponding eigenfrequencies of the connecting rods.
The actual sizes of the samples are shown in TABLE 1. The
uniformly distributed training value ranges 20% broader than
evaluation data to obtain more robust classifiers. There are
also critical values in transition class which ranges +0.025mm
(with width of 0.05mm) between "OK” and “not OK” parts
(see the bottom figure in Fig. 3). In the evaluation process,
classifiers are trained respectively with and without transition
class to evaluate how samples in the transition class influences
the accuracy of the classification. Fig. 3 visualizes the values
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TABLE I
EXPECTED VALUE E AND THEORETIC VALUE RANGES OF THE "OK”
SAMPLES
Value ranges [mm] Value ranges [mm]
Parameter | E [mm] (Training data) (Evaluation data)
min |  max min [ max
dy 18 17.3250 18.6750 17.4375 18.5625
do 30 29.1000 30.9000 29.2500 30.7500
ds 24 23.3250 24.6750 23.4375 24.5625
dy 40 39.1000 40.9000 39.2500 40.7500
h1 7 6.3250 7.6750 6.4375 7.5625
ha 12 11.3250 12.6750 11.4375 12.5625
l 100 98.2000 | 101.8000 | 98.5000 | 101.5000
b 18 17.1000 18.9000 17.2500 18.7500

ranges of the connecting rod’s sizes which are uniformly dis-
tributed and also gives approximate amount of "OK” and “not
OK” sizes calculated from theoretical probability distribution.

Additionally, all data contain the eigenfrequencies up to
about 30 kHz, which can be used as input values for classifi-
cation. For each sample there are 18 eigenfrequencies sorted
by the corresponding modes shapes.

Cross validation with 10 folders are applied during the
training process to evaluate the generalizability of trained
models.

lower critical value ¢ upper critical value ¢y

Training data (case 1: all values)

under range qualified overrange

= 16,67 % = 66,67 % = 16,67 %

Evaluation data (case 1: all values)

under - over
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range range
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Training data (case 2: ignoring values in transition classes)
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= 16,67 % = 66,67 %
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(width: 0.05 mm)
10 %
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Fig. 3. Distribution of training and evaluation dataset

B. Results and Discussions

1) Training: For the similarity between geometric parame-
ters, the evaluation below uses parameter d; as an example.
a) Feature Extraction: Fig. 4 indicates that model of
random forest significantly outperforms the model of bag of
decision trees using raw eigenfrequencies as input. As men-
tioned in section III-C3, random forest has the advantage in
dealing with overfitting data, which explains why it performs
more stable and accurate compared with bag of decision trees.
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Fig. 4. Average recall of all classes with random forest and bag of decision
trees using raw data

In consideration of the redundant input eigenfrequencies,
the feature extraction process is critical to find the features
which represent the geometric length most accurately. As
introduced before (see section III-B), PCA and LDA, as two
of the most representative feature extraction algorithms, are
used to convert the correlated eigenfrequencies into a set of
independent variables.

Fig. 5 shows the recall of each group for the model learned
with random forest using raw data, PCA and LDA respectively.
An increasing number of eigenfrequencies are used as input
to study how many eigenfrequencies required to represent the
geometric parameters. Compared with training directly using
raw data, PCA obviously needs fewer eigenfrequencies to
get a stable performance. However, the recall of “not OK”
samples is not significantly enhanced. LDA, on the other
hand, needs minimal number of eigenfrequencies to achieve a
stable performance with higher accuracy (98.89%, 97.75% and
97.53% respectively of "OK”, under range” and “over range”
samples are correctly classified). The results shows that LDA,
as a supervised feature extraction method, is more appropriate
in extracting the uncorrelated features from eigenfrequencies
between different classes.

b) Classifier Comparison: The performance of each
classifiers using LDA is illustrated in Fig. 6 which shows
the average recall of three classes. If sufficient number of
eigenfrequencies (more than 10) are given, the performances
are almost the same. The highest accuracy is achieved by SVM
with recall of 97.98%. For the trained model with limited
number of eigenfrequencies, random forest and bag of decision
trees outperforms the others with more stable performance.
Since the extracted LDA features are already uncorrelated with
each other, no major difference in recall is found between
random forest and bag of decision trees, which further proves
that LDA features overcome the problem of redundancy in
eigenfrequencies successfully. In general, random forest and
bag of decision trees are the most suitable classifiers in our
case.

c) Geometric Parameters: The confusion matrix of ran-
dom forest is shown Table II, from which it can be seen that
among the 10000 samples, no misclassification between ~un-
der range” and “over range” groups is found, which indicates
that features of “under range” and “over range” samples are
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TABLE II
CONFUSION MATRIX OF RANDOM FOREST OF dj USING
LDA FEATURES

_ Predicted: Predicted: Predicted:
N = 10000 OK Under range | Over range
OK 6566 41 39
Under range 46 1645 0
Over range 50 0 1613

where NN stands for number of samples.

TABLE III
SUMMARIZED PERFORMANCE OF RANDOM FOREST OF dj USING LDA
Parameter . Wlth e OK Under range | Over range
transition classes
Recall Yes 98.70% 95.98% 90.56%
No 100% 100% 100%
Precision Yes 98.46% 93.63% 95.32%
No 100% 100% 100%

more obvious to be distinguished from each other.

The graph in Fig. 7 shows that for each geometric parameter
(length, diameter, depth etc.), the classifiers performs almost
identically. Recall and precision for parameter with higher
deviation like ds, d4 and [ are slightly lower than the others.
In general, the trained models have performed precisely with
both high recall and precision for the three classes.

2) Evaluation: With the trained model obtained with ran-
dom forest using LDA features, two set of tests are carried
out to see how the transition data influences the performance
of classifiers. In TABLE III it is shown that if the test data
includes the transition data, which lies between groups of
”OK” and “under range”, or between “OK” and “over range”,
both recall and precision can be achieved for over 90%. For
the dataset in which the transition classes were ignored, the
recall and precision are even 100% for all groups. The result
shows that the data in transition class is the most important
factor, which strongly influences the performance.

V. CONCLUSION

Classification of geometric defect is one of the most critical
step towards qualified production of forged or casted com-
ponents in automobile manufacturing industry. However, the
efficiency and accuracy in detecting geometric defects is still
an open question so far. In this paper, a solution to overcome
this problem is proposed by using a ART model that combines
feature extraction with defect classification from acoustic
signals. Except the connecting rod, this method can also be
applied to other components consist of one homogeneous
material.

By using the measured eigenfrequencies and appropriate
features, LDA for instance, the most representative information
of geometric parameters are obtained in comparison to state-
of-the-art approaches. Further improvement by finding the
most robust classifiers is observed, which helps to accomplish
the whole detection pipeline in detecting geometric defects.
Random forest is preferred for more robustness against redun-
dancy of eigenfrequencies in geometric defect detection.
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Fig. 5. Recall of each class with random forest using raw data (blue), PCA (green) and LDA (red).
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Fig. 6. Average recall of three classes with different classifiers using LDA
features
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Fig. 7. Average recall and precision of three classes for each geometric
parameter with random forest using LDA features
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