
Human Crowd Detection for Drone Flight Safety Using Convolutional Neural
Networks

Maria Tzelepi and Anastasios Tefas
Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece

Email: mtzelepi@csd.auth.gr, tefas@aiia.csd.auth.gr

Abstract—In this paper a novel human crowd detection
method, that utilizes deep Convolutional Neural Networks
(CNN), for drone flight safety purposes is proposed. The aim of
our work is to provide light architectures, as imposed by the
computational restrictions of the application, that can effec-
tively distinguish between crowded and non-crowded scenes,
captured from drones, and provide crowd heatmaps that can be
used to semantically enhance the flight maps by defining no-fly
zones. To this end, we first propose to adapt a pre-trained CNN
on our task, by totally discarding the fully-connected layers and
attaching an additional convolutional one, transforming it to a
fast fully-convolutional network that is able to produce crowd
heatmaps. Second, we propose a two-loss-training model, which
aims to enhance the separability of the crowd and non-crowd
classes. The experimental validation is performed on a new
drone dataset that has been created for the specific task, and
indicates the effectiveness of the proposed detector.

Index Terms—Crowd detection, Drones, Safety, Convolutional
Neural Networks, Deep Learning.

1. Introduction

The recent advent of Drones in a wide range of applica-
tions such as visual surveillance, rescue, and entertainment,
is accompanied by the demand of safety. Apart from the
robustness, a primary step to settle the issue of safety con-
stitutes in defining no-fly zones for crowd avoidance, since
a drone may operate close to crowds, and is potentially ex-
posed to environmental hazards or unpredictable errors that
render emergency landing inevitable. Furthermore, Drone
flight regulations in several Countries’ national legislation,
especially in European Countries, request that the drones
should not fly over crowds, and even more several laws
define the minimum distance the drone can fly near a
crowd. Thus, it is of utmost importance for the drone to
be able to detect crowds in order to define no-fly zones and
proceed to re-planning during flying operations. This feature
will also allow for pushing on relaxing the restrictions for
autonomous flying of drones keeping safe individual persons
and crowds in the flying area. To this aim, in this paper
we address the problem of crowd detection from drones,

towards crowd avoidance utilizing the state-of-the-art deep
CNNs, [1], [2].

Over the last few years, deep CNNs have been estab-
lished as one of the most promising avenues of research in
the computer vision area, providing outstanding results in a
series of vision recognition tasks, such as image classifica-
tion [3], [4], face recognition [5], digit recognition [6], [7],
pose estimation [8], object and pedestrian detection [9], [10],
and content based image retrieval [11], [12]. It has also been
demonstrated that features extracted from the activation of a
CNN trained in a fully supervised fashion on a large, fixed
set of object recognition tasks can be re-purposed to novel
generic recognition tasks, [13].

CNNs comprise of a number of convolutional and sub-
sampling layers with non-linear neural activations, followed
by fully connected layers (an overview of the utilized net-
work is provided in Fig. 1). That is, the input image is
introduced to the neural network as a three dimensional
tensor with dimensions (i.e., width and height) equal to the
dimensions of the image and depth equal to the number
of color channels (usually three in RGB images). Three
dimensional filters are learned and applied in each layer
where convolution is performed and the output is passed to
the neurons of the next layer for non-linear transformation
using appropriate activation functions. After multiple con-
volution layers and subsampling the structure of the deep
architecture changes to fully connected layers and single
dimensional signals. These activations are usually used as
deep representations for classification, clustering or retrieval.
The size of the input image is fixed and usually scaling is
performed before feeding the image to the network when-
ever there are fully-connected layers in the CNN. In order
to allow for arbitrary image dimensions the CNN should be
fully convolutional.

In this work, we propose a crowd detection method for
drone flight safety, using fully convolutional deep CNNs.
Our focus is to provide a lightweight CNN model, which,
satisfying the computational and memory limitations of
our application, can distinguish between crowded and non-
crowded scenes, captured from drones and provide semantic
heatmaps that can be used to semantically enrich the flying
zones. First, we utilize a pre-trained CNN model, we adapt
it by discarding the fully-connected layers, we add a final
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Figure 1. Overview of the CaffeNet Architecture

convolutional layer, and subsequently we retrain all the
convolutional layers on the utilized dataset. Second, we
propose a novel two-loss-training procedure, which aims
to enhance the separability of the crowd and non-crowd
classes. Finally, we created a new drone crowd dataset to
evaluate the proposed approach since there is no such dataset
publicly available.

The fully-convolutional nature of the proposed model
is very important in handling input images with arbitrary
dimension, and estimating a heatmap for the crowded ar-
eas. This will allow for semantically annotating the corre-
sponding maps and defining no-fly zones. Additionally, the
proposed fully-convolutional model will allow for handling
low computational and memory resources on the drone
whenever there is another process (e.g., replanning, SLAM,
etc.) that takes place, and only low dimensional images can
be processed on the fly for crowd avoidance.

The remainder of the manuscript is structured as follows.
The proposed method is described in detail in Section 2.
The dataset used for the evaluation is presented in Section
3. Experimental results are provided in Section 4. Finally,
conclusions are drawn in Section 5.

2. Proposed Method

In this paper we propose a human crowd detection
method for drone flight safety, that uses deep CNNs.

We utilize the BVLC Reference CaffeNet model, which
is an implementation of the AlexNet model trained on
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012 to classify 1.3 million images to 1000
ImageNet classes, [3]. The model consists of eight trained
neural network layers; the first five are convolutional and
the remaining three are fully connected. Max-pooling layers
follow the first, second and fifth convolutional layers, while
the ReLU non-linearity (f(x) = max(0, x) ) is applied to
every convolutional and fully connected layer, except the
last fully connected layer (denoted as FC8). The output of
the FC8 layer is a distribution over 1000 ImageNet classes.
The softmax loss is used during the training. An overview
of the CaffeNet architecture is provided in Fig. 1.

A common practice in classification problems is to
utilize a pre-trained CNN model, trained on large datasets
such as Imagenet, replace the classification layer with a new
one that represents the labels of a specific dataset and is

initialized randomly, and retrain the network on the specific
dataset, using backpropagation. The basic reason underlying
this practice is the insufficient amount of training data.
Furthermore, a CNN model, trained on large dataset, have
learned in the earlier layers more generic features, that could
be useful in other tasks.

Thus, we first replace the last layer with a new clas-
sification layer that represents the two classes, Crowd and
Non-Crowd, of our problem, following the aforementioned
practice. This approach serves as baseline against the pro-
posed method.

2.1. Modifying a pretained model

Despite the effectiveness of the CaffeNet model, con-
sisting of 61M parameters, the computational limitations of
our application render it prohibitory to use it on the fly,
even if the training procedure has been performed offline.
Towards this end, since the fully-connected layers of the
CaffeNet, as in most CNN models, occupy the most of
the parameters (59M parameters out of a total of 61M
parameters), we propose a new model by discarding the
fully-connected portion of the network, and by attaching
an extra convolutional layer, denoted as CONV6. The new
convolutional layer, with receptive field equal to the whole
input, is initialized randomly, while all the convolutional lay-
ers up to the CONV5 are initialized on CaffeNet’s weights.
The softmax loss is used during training. We denote this
model by One-Loss Convolutional.

This modification drastically reduces the amount of the
model parameters, and consequently the computational cost
is restricted. Additionally, this also allows arbitrary-sized
input images, since the fixed-length input requirement con-
cerns the fully-connected layers. Consequently, this allows
for using low-resolution images, which can be very useful
in our application, since it can further restrict the computa-
tional cost.

2.2. Two-Loss Convolutional model

Inspired by the Linear Discriminant Analysis (LDA)
[14] method, which aims at best separating samples of
different classes, by projecting them into a new low-
dimensional space, which maximizes the between-class sep-
arability while minimizing their within-class variability, we
also propose a new model architecture. The new model,
apart from the softmax loss layer which preserves the be-
tween class separability, includes an extra loss layer which
aims at bringing the samples of the same class closer to
each other.

To achieve this goal, considering a labeled representation
(xi, yi), where xi is the image representation and yi is
the corresponding image label, we adapt the CNN model,
aiming to minimize the squared distance between xi and its
m relevant representations. Here, we define as relevant an
image belonging to the same class to another.

Let I = {Ii, i = 1, . . . , N} be the set of N images of the
training set, and x = MAC5(I) the output of the so-called
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MAC5 layer of the CaffeNet model on an input image I.
The MAC5 layer, is an extra pooling layer which imple-
ments the Maximum Activations of Convolutions (MAC)
[15], over the width and height of the output volume, for
each of 256 feature maps of the CONV5 layer. Then we
denote by X = {xi ∈ R256×1, i = 1, . . . , N} the set of
N feature representations emerged in the MAC5 layer, and
by Ri = {rk ∈ R256×1, k = 1, . . . ,Ki} the set of Ki

relevant representations of the i-th image. We compute the
mean vector of the m representations of Ri to the certain
image representation xi, and we denote it by µi

+ ∈ R256×1.
Then, the new target representations for the images of

I can be determined by solving the following optimization
problem:

min
xi∈X

J + = min
xi∈X

N∑
i=1

‖xi − µi
+‖22, (1)

We solve the above optimization problem using gradient
descent. The first-order gradient of the objective function
J + is given by:

∂J +

∂xi
=

∂

∂xi

(
N∑
i=1

‖xi − µi
+‖22

)
=

∂

∂xi

(
(xi − µi

+)
ᵀ(xi − µi

+)
)

= 2(xi − µi
+),

(2)

The update rules for the n-th iteration can be formulated as:

x
(n+1)
i = x

(n)
i − 2ζ(x

(n)
i − µi

+), xi ∈ X , (3)

where the parameter ζ,∈ [0, 0.5] controls the desired dis-
tance from the relevant representations.

Thus, using the above representations as targets in the
CONV5 layer, we formulate an additional regression task
for the neural network. The Euclidean loss is used during
training for the regression task. The network is initialized on
the CaffeNet’s weights up to CONV5 layer and the two-loss-
training is performed using back-propagation. This model
is denoted as Two-Loss Convolutional. The two proposed
models are illustrated in Fig. 2.

The proposed Two-Loss Convolutional model can be
considered as having an extra regularization layer that ex-
ploits information from the data samples that are relevant
to the input image. The additional cost for retargeting is
performed once during the training and does not affect the
complexity of the model during deployment and testing.

3. Dataset

In order to assess the performance of the proposed
method, since there is no publicly available crowd dataset
of drone videos/images, we constructed our own dataset by
querying specific keywords to the Youtube1 video search
engine. We selected 60 drone videos with keywords describ-
ing crowded events (e.g. parade, festival, marathon, protests,

1. http://www.youtube.com/
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Figure 2. One-Loss Convolutional and Two-Loss Convolutional models.

Figure 3. Sample images of the Crowd-Drone dataset.

political rally, etc). Non-crowded videos have been also
gathered by searching for unspecified drone videos. Non-
crowded images (e.g., bikes, cars, buildings, etc.) also ran-
domly selected from the UAV1232, and senseFly-Example-
drone3 datasets. Sample frames from the gathered video
sequences are provided in Fig.3.

In order to validate the performance of the proposed
method, we left out of the training entire video sequences,
and from their corresponding extracted frames we formu-
lated the test set.

Thus, the train and test image datasets are described
below:

Train Test
Crowd 2184 727

Non Crowd 1914 429
Total 4098 1156

TABLE 1. DATASET INFORMATION

4. Experimental Results

In this section we present the experiments conducted in
order to evaluate the proposed method.

2. https://ivul.kaust.edu.sa/Pages/Dataset-UAV123.aspx
3. https://www.sensefly.com/drones/example-datasets.html
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Figure 4. Heatmaps: The left part of each of ten pairs of images shows the original image, and the right one the corresponding heatmap.
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We implemented the proposed method using the Caffe
Deep Learning framework, [16]. We use the adaptive mo-
ment estimation algorithm (Adam) [17], instead of the sim-
ple gradient descent for the network optimization, with the
default parameters. The parameter ζ in (3) is set to 0.4.

Table 2 illustrates the experimental results of the pro-
posed method against the baseline CNN with fully con-
nected layers and the one-loss fully convolutional CNN. Per-
formance is measured in terms of Classification Accuracy.
The best result is printed in bold.

Training Approach Parameters Layers Accuracy
CaffeNet 61M 8 0.9299

One-Loss Convolutional 2.3M 6 0.91
Two-Loss Convolutional 2.3M 6 0.9532

TABLE 2. CLASSIFICATION ACCURACY

From the provided results, we can observe that the
One-Loss-Convolutional model performs slightly worse than
the refined CaffeNet model since the drastic reduction of
the model parameters affects also the performance, how-
ever the model parameters reduction is very important and
can be considered that compensates for the slightly re-
duced accuracy. Finally, we see that the proposed Two-
Loss-Convolutional training procedure, achieves consider-
ably improved performance against the baselines, with a
significantly lighter architecture (2.3M parameters compared
to 61M of the baseline CNN).

In Fig.4 we provide the heatmaps for the class Crowd
of the proposed classifier. That is, ten test images of size
1024 × 1024 are fed to the network, and we compute the
output of the network at the layer CONV6, for the label
Crowd which is the desired heatmap.

5. Conclusions

In this paper we proposed a novel human crowd de-
tection method, for drone flight safety purposes, utilizing
fully convolutional deep CNNs. The first approach, includes
the CaffeNet model adaptation in order to comply with the
computational requirements of the specific application, and
also benefit from the fully-convolutional networks proper-
ties. Second motivated by the LDA method, we also pro-
posed a two-loss-training procedure, which optimized the
lightweight model to distinguish between crowded and non-
crowded images and concurrently enhance the two classes
separability. Experimental evaluation on the constructed
Crowd-Drone dataset indicates the effectiveness of the pro-
posed method, outperforming the CaffeNet’s baseline.
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