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Abstract—The progressive increase of data rates in wireless
communication systems has induced channel models with sam-
pled impulse responses which are mostly sparse. This paper
presents a unified derivation of adaptive filters exploiting sparsity
in the complex domain, and compares the performance of
classic and state-of-the-art adaptive algorithms for estimating
sparse wireless channels as well as their tracking ability in this
inherently time-varying environment. Simulation results confirm
the efficiency of the sparsity-aware algorithms.

Index Terms—adaptive filtering, sparsity, set-membership,
wireless channel estimation, NLMS

I. INTRODUCTION

The identification of systems with sparse impulse responses
has been largely explored in several adaptive solutions [1]. The
problem of echo cancellation is the original environment where
those sparsity-aware algorithms have been applied [2] [3] [4].

Sparsity in wireless communication channels has become
an important issue to be addressed considering the demands
for ever-increasing transmission data rates. In [5], different
models for sparse wireless channels are presented. In [6],
a comparative analysis is conducted for sparsity-aware algo-
rithms focusing on real-valued channels with slow variations
and considering white and correlated inputs.

The main contribution of this paper is comparing the perfor-
mance of adaptive algorithms for sparse wireless channel esti-
mation in terms of misalignment. Since the pilot signals used
for channel estimation are not strongly correlated, normalized
least-mean-square (NLMS)-inspired algorithms are used. As
compared to [6], this work focuses on long-term evolution
(LTE)-like environments, with time-varying channels, enabling
the assessment of both the algorithms’ tracking ability and
accuracy performance for channel estimation. An additional
contribution of this work is to derive the complex-valued
versions of some sparsity-aware adaptive algorithms, while
also assessing their performance in baseband setups.

The paper is organized as follows: in Section II, wireless
channel models are presented, highlighting their sparsity.
Section III derives in a unified framework the adaptive algo-
rithms used in the forthcoming analyses, considering complex-
valued signals and parameters. In Section IV, the main results
obtained in the comparison are presented. The concluding
remarks of this work are drawn in Section V.

II. SPARSITY IN WIRELESS CHANNELS

As data rates increase in current wireless communication
systems, there is also a corresponding increase in the number
of near-zero samples of the channel model perceived at the dig-
ital receiver front-end. A case in point is [5] where the authors
show that wireless multiple-input multiple-output (MIMO)
channels commonly used in the so-called 4th generation (4G)
of mobile cellular systems can be regarded as sparse. In that
context, the channel is modeled in a four-dimensional domain
comprising variables for transmitting angle, receiving angle,
delay, and Doppler. One of the simplifications of the modeling
presented in [5] and [7] addresses the single-antenna case,
which is the approach used in this paper.

The equivalent baseband received signal for single-input
single-output (SISO) channels is assumed to be

x(t) =

M−1∑
m=0

D∑
d=−D

H(m, d)ej2πdt/T s(t−m/W ) + v(t), (1)

where s(t) is the transmitted signal, m denotes discrete delays
(sampled with period T ), d denotes a discrete frequency-
domain variable accounting for Doppler effects, H(m, d) is the
channel response with bandwidth W , and v(t) is an additive
white Gaussian noise (AWGN) corrupting the received signal.

LTE has become the most popular 4G system, achiev-
ing data rates over 50 Mbps (megabit-per-second). Those
rates give rise to a wide range of values of (m, d) for
which H(m, d) presents small amplitudes, thus inducing a
sparse/compressible model.

In this paper, channel estimation is performed in time-
domain, generating h(t,m), defined as:

h(t,m) =

D∑
d=−D

H(m, d)ej2πdt/T . (2)

In some of the scenarios tested here, h(t,m) varies slowly,
thus yielding an approximately time-invariant impulse re-
sponse during a sufficiently small time-interval ∆t. In this
context, one can write h(t,m) ≈ h0(m) for t0 ≤ t < t0 +∆t.
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A. The Standardized Pedestrian LTE Channel

The frequency bands used in the deployment of LTE usually
range from 700 MHz to 2.5 GHz [8]. Movements of either
transmitter or receiver in an LTE-based communication link
induce channel models that are strongly time-varying and that
suffer from Doppler effects.

Doppler effects are included in the model by inducing slight
time variations in the channel impulse response (CIR). For that
reason, the standardized extended pedestrian A (EPA) channel
is employed since it presents relatively weaker Doppler effects,
as compared to other LTE-based standard channels [9].

A simplified version of the EPA channel is considered
in which only the paths whose power spectral densities are
greater than half the power of the line-of-sight path are
used. Hence, only 3 paths are considered. A quite common
central frequency is used at 800 MHz. Therefore, a 57-tap
channel is modeled at 800 MHz with non-zero taps at positions
(1, 25, 57) with relative powers (0,−1,−2) dB.

Although LTE transceivers usually employ multiple anten-
nas, this paper considers a SISO communication model, for the
sake of simplicity. Adaptive algorithms can be successfully
used to track time variations of the channel. Here, a delay-
domain estimation of the channel is used, since the adaptive
algorithms chosen work in the time-domain. This may be tai-
lored to LTE, in which channel estimation is usually performed
in the frequency-domain, by using the dual of Eq. (2) in the
Doppler-domain.

Next section contains the derivation of complex-valued
versions of state-of-the-art adaptive algorithms that account
for the underlying model sparsity.

III. COMPLEX-VALUED ALGORITHMS FOR
SPARSE CHANNEL ESTIMATION

As presented in Section II, the digital baseband channel
model of a RF passband transmission has complex coefficients.
Therefore, in order to properly estimate the CIR, a complex-
valued adaptive filter should be used. In case the CIR is
sparse, there exist several algorithms that take such sparsity
into account in order to improve convergence speed and/or
estimation accuracy. They are widely known as sparsity-aware
algorithms. Many sparsity-aware algorithms were originally
derived considering real variables. In this section we extend
several recently proposed algorithms to the case where both
filter coefficients and input signals are complex. We do this
in a unified manner in such a way that penalty-based and
proportionate algorithms arise naturally. We focus on NLMS-
type algorithms, since pilot signals used for channel estimation
are usually white or weakly correlated so that the data-
reuse paradigm provided by affine projection (AP) algorithms
would not result in a significant improvement, but would
certainly increase the computational burden. Thus, the AP
data-reuse parameter L was set to zero, yielding NLMS-based
algorithms [10].

A. Derivation of Complex-Valued Sparsity-Aware Algorithms
Let us consider an adaptive filter whose complex coeffi-

cients w(k) ∈ CN , whenever updated, solve the following
optimization problem

min
w(k+1)

1

2
‖w(k + 1)−w(k)‖2G−1(k) +

1

2
αp (w(k + 1)) ,

s.t. d(k)− xT (k)w∗(k + 1) = γ(k), (3)

where d(k) ∈ C is the desired/reference signal, x(k) ∈ CN is
the input vector of the adaptive filter, and γ(k) ∈ C is a set-
membership (SM) parameter that should satisfy |γ(k)| ≤ γ,
with γ ∈ R+ representing the SM error threshold, i.e.,
the amount of error that we consider acceptable given the
problem uncertainties known beforehand or estimated online.
In addition, the norm induced by matrix G−1(k) is defined
as ‖z‖2G−1(k) , zHG−1(k)z with G−1(k) ∈ CN×N being a
positive-definite Hermitian matrix, α ∈ R+ is the weight given
to the penalty term, and p(·) is any well-behaved sparsity-
promoting penalty function.1 Observe that the formulation
in (3) is very powerful and general, as it is comprised of
penalty, proportionate, and set-membership terms.

By using the method of Lagrange multipliers, the problem
in (3) can be rewritten as an unconstrained optimization
problem. In this way, our goal is to find w(k + 1) that
minimizes the Lagrangian L, which is defined as

L ,
1

2
‖w(k + 1)−w(k)‖2G−1(k) +

1

2
αp (w(k + 1)) +

+
1

2
λ∗(k)

[
d∗(k)− xH(k)w(k + 1)− γ∗(k)

]
+

+
1

2
λ(k)

[
d(k)− xT (k)w∗(k + 1)− γ(k)

]
, (4)

where λ(k) ∈ C is the Lagrange multiplier. In (4) we took the
real part of the term corresponding to the constraints because
the involved variables are complex [10].

The optimal w(k + 1) is found by differentiating L wrt.
w∗(k + 1) [10] and equating the result to zero. That is, by

computing
∂L

∂w∗(k + 1)
= 0 we obtain

w(k + 1) = w(k) + λ(k)G(k)x(k)− αG(k)∇p(w(k + 1)),
(5)

where ∇p (w(k + 1)) , ∂p(w(k + 1))/∂w∗(k + 1) is the

gradient of p. Similarly,
∂L

∂λ∗(k)
= 0 is computed:

1

2
[d∗(k)− xH(k)w(k + 1)− γ∗(k)] = 0, (6)

which can be rewritten in a more convenient form as follows,

xH(k)w(k + 1) = d∗(k)− γ∗(k). (7)

Multiplying both sides of (5) by xH(k) on the left, and then
using (7) yields

e∗(k)− γ∗(k) = λ(k)xH(k)G(k)x(k)

−αxH(k)G(k)∇p(w(k + 1)), (8)

1By well-behaved penalty we mean an almost everywhere differentiable
penalty function, such as the l1 norm.
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where e∗(k) , d∗(k)− xH(k)w(k) is the conjugated error.
By assuming xH(k)G(k)x(k) 6= 0 and defining S(k) ,

[xH(k)G(k)x(k)]−1 ∈ R+, we obtain

λ(k) = S(k)[e∗(k)−γ∗(k)]+αS(k)xH(k)G(k)∇p(w(k+1)).
(9)

Substituting (9) into (5) yields

w(k + 1) = w(k) + G(k)x(k)S(k)[e∗(k)− γ∗(k)]

+ αG(k)x(k)S(k)xH(k)G(k)∇p(w(k + 1))

− αG(k)∇p(w(k + 1)). (10)

It is worth mentioning that, in practice, S(k) is replaced
by S′(k) , [xH(k)G(k)x(k) + δ]−1, where δ ∈ R+ is a
regularization used to avoid numerical problems that occur
when xH(k)G(k)x(k) approaches zero.

From Eq. (10), complex versions of most sparsity-aware
algorithms are obtained, as shown in the following subsections.

B. NLMS Algorithm

By setting G(k) = I (no proportionate term), α = 0 (no
penalty term), and γ = 0 ⇒ γ(k) = 0 (no SM term), the
following recursion is obtained

w(k + 1) = w(k) + x(k)S′(k)e∗(k). (11)

In addition, a relaxation parameter µ can be added to control
the step-size of the algorithm leading to

w(k + 1) = w(k) +
µ

xH(k)x(k) + δ
e∗(k)x(k), (12)

which corresponds to the complex NLMS algorithm [10] that
will be used as benchmark in Section IV.

C. Proportionate NLMS Algorithms

If α = 0 and G(k) is a diagonal matrix whose diagonal
entries gnn(k) are proportional to their related coefficients
wn(k) (nth entry of w(k)), then we get the proportionate
family of algorithms whose general recursion is

w(k + 1) = w(k) + G(k)x(k)S′(k)[e∗(k)− γ∗(k)], (13)

if |e(k)| > γ, and w(k + 1) = w(k) whenever |e(k)| ≤ γ.
According to the set-membership principles, we should use
γ(k) = γsign (e(k)), which allows us to rewrite (13) as

w(k + 1) = w(k) +
µ(k)

xH(k)G(k)x(k) + δ
G(k)x(k)e∗(k),

(14)

where

µ(k) =

{
1− γ

|e∗(k)| if |e∗(k)| > γ,

0 otherwise.
(15)

The recursion in (14) corresponds to the SM-PNLMS algo-
rithm for complex variables [11], [12].

Regarding matrix G(k), there are many different ways of
defining its diagonal entries—see [13], [14], [15], [16] for
some examples. A widely used form is given by [12]

gnn(k) =
1− κα(k)

N
+
κα(k)|wn(k)|
‖w(k)‖1

, (16)

where κ is a predefined parameter. Observe that if G(k) = I,
then (14) reduces to the complex SM-NLMS [17], [10].

D. Penalty-based Algorithms

In this family of algorithms, we consider G(k) = I, α 6= 0,
and ∇p(w(k + 1)) ≈ ∇p(w(k)) so that (10) becomes

w(k + 1) = w(k) + x(k)S′(k)[e∗(k)− γ∗(k)]

− α
[
I− x(k)S′(k)xH(k)

]
∇p(w(k)), (17)

if |e(k)| > γ (i.e., an update is required), or w(k+1) = w(k),
otherwise.

For the sake of clarity, let us start considering γ = 0,
implying γ(k) = 0 (non-SM algorithms). The zero attractor
(ZA) algorithms are obtained by choosing p as the l1 norm
leading to ∇p(w(k)) = sign(w(k)).2 An interesting alterna-
tive is to choose p = Fβ [18], where Fβ is an approximation
to the l0 “norm” and the parameter β controls the tradeoff
between smoothness and accuracy of the approximation. There
are many suitable functions Fβ—see [18], [19]—, but for the
simulations presented in the following section we consider just
the Geman-McClure function (GMF), which leads to

(∇p(w(k)))n = (∇Fβ(w(k)))n =
βsign(wn(k))

(β|wn(k)|+ 1)2
, (18)

where (∇p(w(k)))n represents the nth entry of the gradient
vector. In this case, one obtains the NLMS sparse system
identification (NLMS-SSI). In [19], it is shown that, in some
situations, the term αx(k)S′(k)xH(k) may be discarded with
no harm to the convergence, which gives rise to the quasi
NLMS-SSI (QNLMS-SSI). Another alternative, which is re-
lated to the approximation to the l0 “norm” [18], is to choose
(∇p(w(k)))n = (sign(wn(k)))/(1 + ε|wn(k)|) with small
positive ε, which is known as reweighted ZA-NLMS (RZA-
NLMS) algorithm [20].3

The SM versions can be derived by considering γ 6= 0 and
γ(k) = γsign(e(k)). In this way, the sparse SM-NLMS (SSM-
NLMS) is obtained when p = Fβ , as in (18) for example.
Moreover, when the term αx(k)S′(k)xH(k) is discarded, the
SSM quasi NLMS (SSM-QNLMS) is unveiled [18].4

E. Additional Topics

We put some emphasis on the aforementioned algorithms
because they are representative of classic and state-of-the-art
adaptive algorithms for sparse system identification. Formula-
tion in (10) allows us to derive complex versions of others
sparsity-aware algorithms, for instance, by combining both
proportionate and penalty terms, as proposed in [21], [22].

Advantages of the l0 “norm” penalty over the l1 norm are
addressed in [18], [23], [19]. The complexity of some of these

2Observe that the entries of sign(w(k)) are given by sign(wn(k)) =
wn(k)/|wn(k)| when wn(k) 6= 0, or sign(wn(k)) = 0 when wn(k) = 0.

3The examples of (∇p(w(k)))n are the standard expressions for real-
valued variables. For complex variables, a formal derivation would show that
the complex (∇p(w(k)))n is half of the real (∇p(w(k)))n. However, this
is not a big issue, as the factor 1/2 can be incorporated into α.

4Observe that algorithms of the AP-type are generalizations of their NLMS
versions that allow the reuse of previous input vectors.
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algorithms can be found in [18], including the SM algorithms,
which reduce computational cost by not updating the filter
coefficients at every iteration.

IV. RESULTS

In this section, simulations are conducted in order to com-
pare the adaptive algorithms’ performances for sparse wireless
channel estimation. The main figure of merit chosen for the
comparison is the Misalignment [18], computed as

Misalignment(k) =
1

R

R∑
r=1

‖h(r)(k)−w(r)(k)‖22
‖h(r)(k)‖22

, (19)

where R denotes the number of Monte-Carlo runs, w(r)(k)
and h(r)(k) are, respectively, the coefficient vector and the
channel realization at kth iteration for the rth Monte-Carlo run.

The first simulation scenario comprises a very sparse chan-
nel, similar to the ones used in a previous comparison [18],
with only one non-zero tap out of 40. The position of the non-
zero tap was varied twice, one at iteration 300 and another
at iteration 550, while keeping the magnitude of these taps
fixed. The main difference is the complex model for the
channel taps, since our channel is the baseband equivalent to
RF transmission channels. The input signal is binary phase
shift-keying (BPSK) symbols. In this simulation, 2500 sym-
bols were transmitted. Misalignment was calculated according
to (19), with R = 2000, with results presented in Fig. 1(a).

The algorithms used in these simulations present several
different parameters. They were all set up in order to present
similar mean-squared error (MSE) convergence rates in the
beginning of transient states, as depicted in Fig. 1(b). This
criterion allows one to draw a fair comparison among the
different algorithms, since they all are conceived based on
MSE-related cost-functions.5 The SM threshold was set as
γ̄ =

√
0.8σ2

v and the noise power σ2
v = 0.01.

Based on Fig. 1(a), one can verify that SM-based algorithms
presented worse tracking ability. On the other hand, SM-based
algorithms, together with RZA-NLMS, presented lower final
misalignment. The percentage of iterations with updates for
SSM-NLMS and SSM-QNLMS were both 56.1%, whereas
for SM-PNLMS it was 60.2%.

Simulations were also performed using quadrature am-
plitude modulation (QAM) constellation. The misalignment
results are shown in Fig. 2. Once more, 2500 symbols were
transmitted and R = 2000 Monte-Carlo runs were used. The
results were similar to the simulation with BPSK transmission,
except for a better performance of SM-PNLMS. As for the
percentage of updates, the values for SSM-NLMS and SSM-
QNLMS were 51.3%. For SM-PNLMS, there were updates in
54.3% of the iterations.

In order to test the algorithms behavior when the channel
is time-variant, the EPA channel described in Subsection II-A,
is considered in the next simulation. The EPA channel was

5However, in this particular setup, we verified through other simulations
that SM-PNLMS could achieve an even lower misalignment if other criteria
were used.
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Fig. 1. Results for BPSK input signal.
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Fig. 2. Misalignment curves measured for QAM input.

modeled to present a coherence time around 75 ns. The CIR
remains constant by 60 iterations and then it suffers a small
variation so that the non-zero taps may be modeled as a
first-order autoregressive process hn(k) = λ1hn(k − 59) +
λ2vw,i(k), where λ1 = 0.9995, λ2 = 0.005 and vw,i(k)
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is a complex white noise with unit power. Moreover, strong
variability on the channel was added on iterations 1200 and
2400, by re-randomizing the magnitude values of the non-zero
taps and shifting their position by 1 sample.

In this simulation, 4000 BPSK symbols were transmitted
and the result was averaged along R = 6000 Monte-Carlo
runs. The misalignment curves are presented in Fig. 3, show-
ing that all algorithms presented very good tracking ability
throughout the iterations. SSM-NLMS and SSM-QNLMS
achieved lower convergence rates. On the other hand, SSM-
NLMS and SSM-QNLMS updated in only 62.9% of the iter-
ations, while SM-PNLMS updated in 63.5% of the iterations.
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Fig. 3. Misalignment curves measured for BPSK input and EPA channel.

In the simulations with time-invariant channel, both RZA-
NLMS and set-membership algorithms achieved lower levels
of MSE and misalignment. In addition, considering only MSE
measurements, QNLMS-SSI algorithm also presented compet-
itive performance. However, when the channel becomes time-
variant, QNLMS-SSI, RZA-NLMS, and NLMS algorithms
presented best misalignment performance.

V. CONCLUDING REMARKS

This paper presented complex-valued versions of some
state-of-the art sparsity-aware adaptive algorithms in a unified
framework and their comparative analyses when applied to
wireless channel estimation with high degree of sparsity.
NLMS-based algorithms have been tested in simple scenarios,
and also in a time-varying channel. The algorithms that exploit
sparsity presented the best results, both in terms of final MSE
as well as misalignment. Set-membership algorithms yielded
a trade-off between convergence speed and lower computa-
tional complexity. The standard NLMS algorithm presented
competitive performance in terms of tracking.
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