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Abstract—In this paper, we propose an acoustic scene clas-
sification method for a distributed microphone array based on
a combination of spatial information of multiple sound events.
In the proposed method, each acoustic scene is characterized
by a spatial information representation based on a bag-of-
words called the bag of acoustic spatial words. To calculate
the bag-of-acoustic spatial words, spatial features extracted from
multichannel observations are quantized and then aggregated
over a sound clip, that is, each sound clip is regarded as a
unit of a“document.” Moreover, a supervised generative model
relating acoustic scenes and bag-of-acoustic spatial words is
also adapted, which enables robust acoustic scene classification.
Experimental results using actual environmental sounds show
that the proposed approach achieves more effective performance
than the conventional acoustic scene classification approach not
utilizing a combination of the spatial information of multiple
sound events.

I. INTRODUCTION

The classification of acoustic scenes (cooking, vacuuming,
watching TV, being on the bus, meeting) or acoustic events
(footsteps, running water, voice) has recently become impor-
tant for many applications such as monitoring elderly people
[1], [2], automatic surveillance [3]–[5], automatic classifica-
tion of life-logging [6], [7], and multimedia retrieval [8]–[10].

To analyze acoustic scenes or acoustic events, many ef-
fective methods based on machine learning techniques have
been proposed. For instance, Eronen et al. [6] and Mesaros et
al. [11] have proposed methods based on the mel-frequency
cepstral coefficients (MFCCs) for spectral feature extraction
and hidden Markov models (HMM) for acoustic scene or event
analysis. Cauchi et al. [12] have proposed an acoustic scene
classification method that utilizes spectral bases captured by
non-negative matrix factorization (NMF). As other methods
of acoustic scene classifications, we can focus on the fact that
acoustic scenes are characterized not by a single sound event
but by a combination of multiple sound events. For instance,
an acoustic scene “cooking” is characterized by a combination
of multiple sound events including “running water,” “cutting
ingredients,” and “heating a skillet.” On the basis of this idea,
Guo and Li [13], Kim et al. [14], and Imoto and coworkers
[7], [15] proposed acoustic scene classification methods based
on the bag-of-acoustic words, which quantize the spectral
features into acoustic words and aggregates acoustic words
into a histogram of them.

Meanwhile, the location of a sound source varies from
acoustic scene to acoustic scene. For example, when consid-
ering an acoustic scene “cooking,” sound sources are often
in a kitchen, and when considering another acoustic scene
“eating,” sound sources are often in a dining area. Therefore,
acoustic scenes can be characterized not only by using spectral
information but also by using spatial information. Using many
acoustic sensors simultaneously, such as smartphones, IoT
devices, and surveillance cameras, spatial information can
be extracted, and some researchers have proposed methods
utilizing spatial information for acoustic scene classification
or acoustic event detection [16]–[19]. One of the fundamental
ways of extracting spatial information from a microphone
array is to use a single-position information or the single
direction of arrival (DOA) of a sound source based on sound
source localization or DOA estimation. However, to apply
these methods, the position information of microphones is
needed and the microphones require synchronizing, and there-
fore, it is not easy to use them for a distributed microphone
array. To address this problem, we previously proposed a
method for extracting spatial information that does not need
the position information of the microphone array and does not
need precisely synchronized microphones if the microphones
are positionally fixed [20].

On the other hand, acoustic scenes can be also characterized
by a combination of sound events in the spatial approach as
well as the spectral approach. For example, an acoustic scene
“cooking” is characterized by a combination of sound events
including “running water from a faucet,” “cutting ingredients
on a cutting board,” and “heating a skillet on a range.”
Therefore, in this paper, as an acoustic scene classification
method for a distributed microphone array that can consider
a combination of the spatial information of multiple sound
events in a long-term sound, we propose a bag-of-words-based
approach for representing spatial information and an acoustic
scene classification method based on a generative model of
the bag-of-words-based spatial representation.

The remainder of this paper is structured as follows. In
Section 2, we describe our proposed spatial feature extraction
method based on the bag-of-words and a generative-model-
based acoustic scene classification method. In Section 3, we
present the results of acoustic scene classification experiments,
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Fig. 1: Overview of spatial-feature-based BoW representation

and Section 4 concludes this paper.

II. PROPOSED SPATIAL-INFORMATION-BASED ACOUSTIC
SCENE CLASSIFICATION

A. Motivation and strategy of proposed method
In many situations, acoustic scenes are characterized by a

combination of spatial information of multiple sound events
in a long-term sound. To extract the combination of spatial
information of multiple sound events, we focus on a his-
togram of the spatial information of sound events in short
time frames during the long-term sound, which is based on
the bag-of-words (BoW) representation [21], [22]. The BoW
representation is a simple and effective means of representing
acoustic scenes; however, it still has redundancy because there
is partiality in the histogram of spatial information from
acoustic scene to acoustic scene, for example; an acoustic
scene “cooking” mostly occurs in the kitchen, that is, the
histogram of spatial information has a sparse structure. There-
fore, in this paper, we also apply a generative Bayesian model
of spatial information for modeling and classifying acoustic
scenes, which can reduce the redundancy of the spatial feature
representation in acoustic scenes.
B. Spatial-feature-based BoW representation for multichannel
observations

The BoW [21], [22], which characterizes the content of a
document as a word histogram, is a simple feature represen-
tation of the document but an effective means of analyzing
its content. Focusing on this idea, some researchers have
employed the BoW representation in other research fields
such as computer vision (bag-of-visual words) or acoustics
(bag-of-acoustic words [7], [14], [19], bag-of-angle words
[23]). Specifically, the bag-of-acoustic words is a discrete
feature representation that quantizes the spectral features of
sounds into acoustic words and aggregates acoustic words into
a histogram of them. The bag-of-angle words is a discrete
feature representation of the DOA of sound sources and it
is also a simple means of representing spatial information.
However, to utilize the bag-of-angle words, the DOA of sound
sources must be estimated preliminarily, which premises that
microphone positions are known. Therefore, it is not easy to
apply the bag-of-angle words to acoustic scene classification
using a distributed microphone array because in many cases,
a distributed microphone array is used without location infor-
mation.

Therefore, we here introduce a BoW representation that can
be applied to any spatial feature of a distributed microphone

TABLE I: Definitions of symbols
Symbol Definition
S # of acoustic spatial word sequences (# sound clips)
A # of classes of acoustic scenes
T # of classes of acoustic spatial topics
M # of classes of acoustic spatial words
Nws # acoustic spatial words in acoustic spatial word

sequence ws

s Index of acoustic spatial word sequence
a Class index of acoustic scene
t Class index of acoustic topic
m Class index of acoustic spatial word
i Order index of acoustic spatial word in each acoustic

spatial word sequence
W Set of acoustic spatial word sequence
as Possible acoustic scenes in spatial word sequence s
as Acoustic scene in spatial word sequence s
z Acoustic spatial topics
ws sth spatial word sequence
θa Acoustic spatial topic distribution of acoustic scene a
θa,t Occurrence probability of acoustic spatial topic t in

acoustic scene a
ϕt Acoustic spatial word distribution of acoustic spatial

topic t
ϕt,m Occurrence probability of acoustic spatial word m in

acoustic topic t
α, β Hyperparameters for Dirichlet distribution
na
t , n

t
m # of acoustic spatial words assigned to acoustic spatial

topic t in acoustic scene a, etc.
\s, i Exclude ith acoustic spatial word in ws

array. Figure 1 shows an overview of the spatial-feature-
based BoW representation. To calculate the spatial-feature-
based BoW, spatial features are extracted from multichannel
observations frame by frame and are quantized into acoustic
spatial words. The acoustic spatial words in each sound clip
are then aggregated into the BoW, that is, each sound clip is
regarded as a unit of a “document.”

C. Generative model of BoW for acoustic scene classification

There is partiality in the distribution of the spatial-feature-
based BoW, that is, the spatial-feature-based BoW has a sparse
structure. Therefore, we also apply a generative Bayesian
model of the spatial-feature-based BoW for modeling and
classifying acoustic scenes, which enables the sparse modeling
of acoustic scenes. Such a generative model has been proposed
for the bag-of-acoustic words, which is called the supervised
acoustic topic model (sATM) [7], and thus, we adapt this
model for the spatial-feature-based BoW.

In this model, the process generating acoustic spatial words
can be represented by a hierarchical process including the
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acoustic scenes, acoustic spatial words, and acoustic spatial
topics, where an acoustic spatial topic represents the latent
structure appearing in acoustic spatial words. Additionally, to
explicitly model the relationship between acoustic scenes and
the BoW and to utilize the proposed model for acoustic scene
classification, we here propose a supervised generative model
of acoustic spatial words.

The specific generative process is as follows. As prepro-
cessing of the generative model, a continuous acoustic signal
of, for example, 1h length, is divided into sound clips of 10s
length. Each sound clip is then represented by a sequence
of acoustic spatial words (bag of acoustic spatial words),
which is converted from an acoustic signal into an acoustic
spatial word frame by frame. As the generative model, we
assume that possible acoustic scene labels are preliminarily
given to each acoustic spatial word sequence explicitly, and
that an acoustic scene is generated randomly from them in
its generative process. Then, we assume that each acoustic
scene has a different acoustic spatial topic distribution θa,
and an acoustic spatial topic is then generated from its
distribution frame by frame. After that, an acoustic spatial
word is generated from the distribution of acoustic spatial
words ϕt frame by frame, which depends on the acoustic topic.
Note that these distributions θa and ϕt have Dirichlet priors,
that is, hyperparameters α and β control the sparseness of
the acoustic spatial topic and spatial word distributions, with
which we can avoid overfitting of the model to the given data.
Thus, the generative process of the acoustic spatial words is
represented as follows, where the symbols used in this paper
are defined in Table I.

A set of possible acoustic scenes as is given,
for a = 1 to A do

Choose θa ∼ Dirichlet(α)
end for
for t = 1 to T do

Choose ϕt ∼ Dirichlet(β)
end for
for s = 1 to S do

Choose as ∼ Uniform(as)
for i = 1 to Nes do

Choose zs,i | θas , as ∼ Categorical(θas)
Choose ws,i | ϕzs,i , zs,i ∼ Categorical(ϕzs,i)

end for
end for

Additionally, the generative probability of all acoustic spatial
words W can be represented as follows.
p(W|α, β, γ,as)

=
S∏

s=1

Nws∏
i=1

A∑
a=1

T∑
t=1

M∑
m=1

p(ws,i = m|zs,i = t, α, β, as = a)

·p(zs,i = t|as = a, α)p(as = a|as)

=
1

A

S∏
s=1

[ ∫
Γ(Tα)

Γ(α)T

·
Nws∏
i=1

{ T∏
t=1

θ
α−1+na

t
a,t

∫
Γ(Mβ)

Γ(β)M

M∏
m=1

ϕ
β−1+nt

m
t,m dϕt

}
dθa

]
(1)
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Fig. 2: Microphone arrangements and locations of sound
sources in each acoustic scene

To estimate the model parameters, we here introduce
Bayesian inference based on collapsed Gibbs sampling (CGS)
[24]. CGS iteratively samples latent variables corresponding to
acoustic scenes and spatial topics in accordance with the con-
ditional posterior probability of given acoustic spatial words
as follows, which do not include updated acoustic scenes and
spatial topics, respectively.

p(zs,i|w, z\s,i,a, α, β) ∝ (na
(\s,i),t + α) ·

nt
(\s,i),m + β

nt
(\s,i),· +Mβ

(2)

p(as|w, z,a\s, α, β) ∝
na
(\s),t+α

na
(\s),·+Tα (3)

This sampling is repeated until the iterative update converges,
then the posterior distributions of the acoustic spatial topics
and spatial words are calculated from the estimated latent
variables.

When classifying acoustic scenes using the proposed model,
we first estimate the distributions of acoustic spatial topics θa

and acoustic spatial words ϕt using a training dataset, and
then we estimate an acoustic scene in test data by selecting the
acoustic scene with highest posterior probability as follows.

arg max
a

p(a|θa,ϕt,ws, α, β) (4)

D. Spatial and spectral integrated bag-of-word representation
and integrated generative model

Considering the resemblance of the spatial-feature-based
BoW and the bag-of-acoustic words, we can introduce an
integrated BoW representation utilizing the spatial and spectral
information as well as a generative model of the integrated
BoW representation.

To calculate the integrated BoW representation, concate-
nated vectors of the spatial and spectral features are quantized
into acoustic spatial and spectral words frame by frame, then
they are aggregated into the BoW. In a generative model of
the BoW and the acoustic scene classification using the model,
we can introduce posterior probabilities of acoustic scenes by
replacing acoustic spatial word sequence ws with the acoustic
spatial-spectral word sequence in Section II-C.
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TABLE II: Typical sounds in each acoustic scene
Acoustic scene Typical sounds

Vacuuming whine of cleaner, footsteps
Cooking cutting, sizzling, running water, clattering dishes

Dishwashing running water, clattering dishes
Eating clattering dishes, voices, coughing

Newspaper flipping newspaper, footsteps
PC clicking mouse, clacking keyboard, fan noise

Chatting voices, coughing
TV voices, music, sound effects, cheering

Laundry running water, rinsing sound, notification sound

TABLE III: Experimental conditions

# of distributed microphones 13
Sampling rate /Quantization bit rate 48 kHz/16 bits
Reverberation time of living room 0.31 s
Average SNR 25.2 dB
Sound clip length 8 s
Frame length /FFT points 20 ms/2,048
# of frequency bins (GFSC) 8

III. EXPERIMENTS

A. Environmental sound recordings

To evaluate the scene classification performance of the
proposed method, we conducted an experiment using an
actual environmental sound dataset. Nine acoustic scenes that
frequently occur in a living room were chosen and the sound
dataset was recorded using 13 synchronized microphones as
shown in Fig. 2. In Fig. 2, the locations of sound sources
related to each acoustic scene are also shown. Each acoustic
scene typically included acoustic events listed in Table II. The
sound dataset has 257.1 min of sounds and it was separated
into 7,712 clips of the sounds, where none of the acoustic
scenes overlapped with each other in all the sound clips. The
other recording conditions and experimental conditions are
listed in Table III.

B. Spatial-feature-based BoW calculation and acoustic scene
classification

Figure 3 shows the acoustic scene classification process
using the spatial-feature-based BoW representation and the
generative model of acoustic spatial words. To extract the
spatial features, we utilized the spatial cepstrum (SC) proposed
in [20]. Similarly, the generalized-frequency spatial cepstrum
(GFSC) is used for the integrated feature including spatial
and spectral information [20]. The SC and GFSC can extract
the spatial information efficiently and robustly without using
locations of the microphones. Specifically, the SC is calculated
by principal component analysis (PCA) of the channel-based
log-amplitude vector

qτ =



log bτ,1
log bτ,2

...
log bτ,n

...
log bτ,N


, (5)
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Fig. 3: Process of acoustic scene classification with spatial-
feature-based BoW and sASTM

TABLE IV: Acoustic feature, number of feature dimensions,
method of acoustic scene modeling, and average estimation
accuracy in proposed and conventional methods

Acoustic feature Feature Scene Average
dimension modeling F-score

MFCCs 12 GMM 42.4%
SC 13 GMM 46.8%
GFSC 25 GMM 50.4%
BoW (MFCCs) 512 GMM 38.6%
BoW (SC) 512 GMM 47.4%
BoW (GFSC) 512 GMM 57.7%
BoW (MFCCs) 512 sATM 52.7%
BoW (SC) 512 sATM 53.0%
BoW (GFSC) 512 sATM 64.3%

BoW (MFCCs) 512 Classifier 45.1%stacking [19]

where τ , n, and bτ,n are the time frame index, microphone
channel index, and multichannel power observation at each
time frame. After calculating the SC and GFSC, they were
quantized by using a Gaussian mixture model (GMM), and a
spatial-feature-based BoW was calculated sound clip by sound
clip. Here, the SC and GFSC were classified by using the
GMM in an unsupervised manner, and then each Gaussian
component was defined as a single acoustic spatial word or
acoustic spatial-spectral word. In the acoustic scene classifi-
cation, the parameters of the proposed generative models were
estimated using acoustic scene labels and BoWs in the training
dataset. Then, acoustic scenes of the test dataset were classified
by the maximum a posteriori (MAP) estimation.

C. Comparative approaches for acoustic scene classification
To compare the acoustic scene classification performance,

we evaluated a conventional GMM-based approach, which
extract acoustic features and calculate likelihoods for acoustic
scenes using GMM frame by frame, and then, product the
likelihoods over the number of frames in each sound clip.
For this approach, we utilize the SC and GFSC as the spatial
feature. We also evaluated other methods of acoustic scene
classification utilizing spectral information. In these methods,
we first aggregated acoustic signals recorded by multichannel
microphones to a central node and averaged them over the
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channels. We then extracted MFCCs as spectral acoustic
features frame by frame or the bag-of-acoustic words sound
clip by sound clip. As the acoustic scene classifiers, the GMM
and the supervised acoustic topic model (sATM) [7] were used.
As another method for acoustic scene classification utilizing
the distributed microphone array, we also evaluated a classifier
based on the late fusion-based classification method [19]. In
this method, the bag-of-acoustic words was first extracted in
each channel and acoustic scenes were classified channel by
channel. Then, the acoustic scene classifier was learned by a
combination strategy from the training data [19].

D. Experimental results
Table IV shows the classification accuracy of acoustic

scenes in terms of the average F-score. These results indicate
that the spatial information extracted by the spatial-feature-
based BoW representation enables acoustic scenes to be clas-
sified effectively as well as when using the bag-of-acoustic
words. Moreover, the proposed approach achieves more ef-
fective performance than the conventional approaches not
utilizing combinations of the spatial information of multiple
observations. Additionally, the BoW representation combining
spectral information and spatial information has a higher
performance than that utilizing either spectral or spatial infor-
mation. Thus, when using the BoW (GFSC) and the generative
model of acoustic spatial and spectral words, the classification
accuracy achieved its highest performance (64.3%).

IV. CONCLUSION

We proposed a spatial-information-based method for acous-
tic scene analysis, which utilizes a generative model of
acoustic spatial words. In the proposed method, each acous-
tic scene is characterized by the spatial-feature-based BoW
representation. To calculate the spatial-feature-based BoW,
spatial features extracted from multichannel observations are
quantized and then aggregated over a sound clip, that is, each
sound clip is regarded as a unit of a “document.” Moreover,
a supervised generative model relating acoustic scenes and
spatial-feature-based BoW is also proposed, which enables
robust acoustic scene classification. Experimental results con-
ducted using real-life environmental sounds indicated that the
proposed method is more efficient for acoustic scene clas-
sification than the conventional acoustic scene classification
approach utilizing only single-spatial information or spectral
information. Additionally, experimental results also indicated
that the integrated BoW representation of spectral information
and spatial information has a higher performance than that
utilizing either spectral or spatial information.
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