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Abstract—In this paper, we propose a novel kernel learning
scheme for acoustic scene classification using multiple short-term
observations. The method takes inspiration from the recent result
of psychological research — “Humans use summary statistics to
perceive auditory sequences”; we endeavor to devise computa-
tional framework imitating such important auditory mechanism
for acoustic scene parsing. Conventional schemes usually encode
spectro-temporal patterns with a compact feature vector by time-
averaging, e.g. in Gaussian Mixture models (GMM). However,
such integration may not be the ideal, since the arithmetic mean is
vulnerable to extreme outliers which can be generated by sounds
irrelevant to scene category. In this work, an effective scheme
has been developed to exploit rich discriminant information from
multiple short-term observations of an acoustic scene. Concretely,
we first segment audio recording into short slices, e.g. 2 seconds;
one vector can be extracted from each slice consisting of descrip-
tive features. Then, we employ the resultant feature matrix to
represent an acoustic scene. Since discriminant information of
an acoustic scene can be characterized by either global structure
or local patterns, we perform heterogeneous kernel analysis in
hybrid feature spaces. Moreover, we conditionally fuse the two-
way discriminant information to achieve better classification.
The proposed method is validated using DCASE2016 challenge
dataset. Experimental results demonstrated the effectiveness of
our approach.

I. INTRODUCTION

Computational auditory scene analysis becomes more active
area of research in recent years [1], [2]. It refers to the
computational analysis of recording of acoustic scene, and
the interpretation of useful information, such as location
and interested activities. The recorded audio data, as multi-
dimension stream fluctuating on time-frequency plane, usually
embody high variations. To effectively perform acoustic scene
recognition, it is preferred to systematically design the scheme
considering the audio structure, similarity metric and classifier.
This paper addresses the problem of acoustic scene classifi-
cation (ASC) and proposes novel scheme to characterize rich
discriminant information from acoustic scenes.

For decades, the research topics of Audio scene content
analysis and retrieval have been long-standing [3]. Much
research efforts have been spent on development of acoustic
scene classification system using advanced signal processing
and machine learning techniques [1], [4]. Although some
progress has been made, the key issues in acoustic scene
understanding, i.e. effective/robust feature representations and

suitable framework for acoustic scene parsing, are still open
questions to the research field.

In computational auditory scene analysis, one crucial issue
is to extract efficient features to characterize acoustic scene [1],
[5]. Standard approach to ASC firstly extracts time-frequency
representations (TFRs) from audio signal, such as Mel-scale
spectrogram and mel-frequency cepstral coefficients (MFCCs);
then, statistical moments, including Gaussian mixture models
(GMM), skewness and kurtosis, are employed to convert TFRs
(matrix) to compact feature vector [6], [7], [8]. It is noteworthy
that arithmetic mean played a key role throughout feature
extraction.

Recent psychological studies reveal that “Humans use sum-
mary statistics to perceive auditory sequences” [9], [10]. Al-
though aforementioned descriptive statistics can be employed
as off-the-shelf tools to ”summarize” acoustic scenes, human
auditory system is functioning differently. More concretely,
time-averaging statistics assume that every frame of audio
data contains identical discrimination information for ASC.
In contrast, auditory system adopts an adaptive scheme that
”keep the relevant information about the environment, while
weeding out the irrelevant detail”, according to latest research
report [11]. The mechanism had also been validated through
listening test [12].

This paper attempts to achieve superior acoustic scene
classification through establishing kernel discriminant analysis
on feature matrix extracted from multiple observations of
acoustic scene. In detail, we first segment audio clip into slices;
then extract descriptive feature vector from every slice. A set
of feature vectors can be obtained which is used to repre-
sent acoustic scene. Compared with conventional vector-wise
features, proposed matrix representation retains plenty of local
discriminant patterns. At classification stage, Gaussian mixture
models (GMM) and support vector machines (SVM) are most
extensively applied classifiers to perform vector-wise acoustic
scene classification [1].[2]. Lately, inspired by the success of
deep neural networks (DNN) in numerical application fields,
e.g. computer vision and speech recognition applications, the
method and its variants had been employed for content analysis
of ambient sounds [2]. However, lack of large-scale labeled
sound event data is the practical issue that deteriorates the
performance of DNN-based ASC systems. In this study, in
order to exploit discriminant information from acoustic fea-
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Fig. 1. Proposed acoustic scene classification scheme using heterogeneous kernel learning

ture matrix, we introduce heterogeneous similarity measures,
including set-to-set Riemannian distance on Grassmann man-
ifold and (column) instance-wise distance in Euclidean space.
The hypothesis behind is that both short and long time obser-
vations can convey information to discern an acoustic scene.
Moreover, according to result of latest DCASE2016 challenge
[2], aggregation of multiple features/similarity metrics can
greatly boost classification accuracy [13], [14], since it is
possible way to integrate multiple-domain discriminant power
for better classification. In a similar manner, we conditionally
fuse scores obtained from different kernel feature spaces and
perform classification on aggregated scores. In short, our major
contributions lie in:
† We employ matrix-based acoustic scene feature repre-

sentation for ASC task. In contrast to conventional features
that rely on time-integrated feature vectors, the matrix-based
feature retrains rich short-term spectro-temporal discriminant
information which is anticipated to greatly contribute to clas-
sification task.
† Since discriminant information of an acoustic scene can

be characterized by either global structure or local patterns,
we introduce kernel methods to exploit discriminant infor-
mation in hybrid feature spaces. In detail, heterogeneous
kernel learning is adopted to investigate various notions of
similarities, including both set-to-set similarity defined on
Grassmann manifold (also a Riemannian space) and vector-
wise similarity in Euclidean space. Furthermore, we effectively
aggregate the scores obtained from multiple feature spaces to
boost classification performance.
† Several hyperparameters, such as Fourier window length

and slice length, play key roles in ASC [2]. We conducted
extensive experiments on optimal hyperparameter selection.
The results can facilitate further ASC research. Finally, the
proposed framework has been validated with DCASE2016
Task 1 dataset and favorable performance has been achieved.

II. PROPOSED METHOD

In this section, we describe our ASC approach with details.
A schematic flowchart is shown in Fig. 1.

A. Acoustic feature representation

1) Short-term Fourier transform (STFT): We first convert
audio waveform to spectrogram by using short-time Fourier
transform:

F(f, t) =
N−1∑
n=0

s(n)w(n)e
−j2πnf

N , (1)

where s(n) denotes audio frame segmented by length N ,
w(n) represents hamming window and the short time spectral
column F (f, t) at time t can be derived. Fourier window
length N is crucial parameter in ASC, therefore we conduct
experiments in Sec. 3 to choose optimal N. To reduce dimen-
sion of spectrogram, we employ 60-band mel-scale filter bank
and logarithmic conversion is then applied on Mel frequency
scale energies. The obtained time-frequency representation is
denoted by FMel−log(b, t), b ∈ [1, 60] is filter bank index.

2) Histogram of oriented Gradients (HoG) local descriptor:
Latest research toward ASC manifests that 2-dimensional local
descriptors are efficient for describing environmental sounds,
such as using local Binary patterns (LBP) [15] and histograms
of oriented gradients (HoG) [16]. In a similar vein, we adopt
HoG descriptor to characterize spectro-temporal structures in
acoustic scenes. The extracted time-frequency representation
is expressed as FHoG−Mel−log.

3) Segmenting and pooling: To extract concise feature
(matrix) from acoustic scene, we perform segmentation and
pooling over FHoG−Mel−log. Firstly, we uniformly divide
feature matrix into K slices along time axis; then average- and
max-pooling are carried out on each slice and two resultant
vectors are concatenated to form acoustic feature. As a result,
input audio waveform is converted to feature matrix denoted
by X = [x1, ...,xK ] ∈ RD×K , where xk ∈ RD represents
acoustic feature vector from k-th slice.

B. Kernel discriminant learning in hybrid feature space for
ASC

Based on acoustic feature matrices, we employ hetero-
geneous kernel learning to perform pattern analysis in two
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feature subspaces, which are dedicated to characterize dis-
criminant information from global and local structures. Then,
resultant two-way posterior probabilities are aggregated so as
to make acoustic scene classification.

1) Kernel-based global (set-wise) similarity analysis: In
this section, we explain the set-to-set similarity measures
employed for acoustic scene classification in kernel feature
space. We start with a briefly review on background theory
of grassmannian geometry and further introduce the kernel
analysis scheme used in this study.

The acoustic scene feature matrix X can be represented by
a linear subspace P ∈ RD×r via eigenvalue decomposition:

K∑
k=1

xkx>k = PΛP>, P>P = Ir (2)

where P = [p1, ...,pr] are eigenvectors and diag(Λ) are
eigenvalues. All extracted orthonormal matrices describing
acoustic scenes can be treated as a collection of linear sub-
spaces, which are also the points on Grassmann manifold
Gr(D, r) (also a Riemannian manifold). The geodesic distance
between two linear subspaces Pi and Pj in Euclidean space
is defined as the principal angles, or canonical angles [17].
The standard approach to compute between-subspace angles
is to apply SVD, in which

P>i Pj = USV′, where U>U = I,V>V = I

S = diag(cos2θ1, ..., cos2θm)
(3)

cos θi is the cosine of the ith principal angle. cos θ1, ..., cos θd,
sorted in descend order, are known as canonical correlations.
The principal angles 0 ≤ θ1 ≤ ...... ≤ θk ≤ π/2 can be
computed from singular values.

Audio data of acoustic scenes are of a nonstationary and
nonlinear nature. However, the principal angle metric can only
deal with linear discriminant analysis in Euclidean space. As
for non-linear classification, the Radial basis function (RBF)
kernel has been proved effective for a variety of applications
[1], which maps the data points to an infinite dimensional
Hilbert space, where nearly-linear hyperplane can be found
[18]. In the same vein, we employ kernel learning method
on Grassmann manifold to enable non-linear classification
of acoustic scenes with matrix feature representations. We
first project similarity between two points Pi and Pj on
Grassmann manifold to Euclidean space using positive definite
Mercer kernels [19]. In this study, we use projection kernel,
which can be expressed as

KPr = ||P>i Pj ||2F , (4)

the mapping corresponding to the kernel is given by
ΦPr(P) = PP>. Various kernels can be further generated
from KPr, such as projection-RBF kernels:

Kploy
Pr (Pi,Pj) = (γKPr(Pi,Pj))

d, (5)

and projection-polynomial kernels:

Krbf
Pr (Pi,Pj) = exp(−γ||ΦPr(Pi)− ΦPr(Pj)||2F ), (6)

where || · ||F indicates Frobenius norm. Based on empirical
studies, projection-RBF kernel achieved better classification
performance on multiple tasks [19], and thus it is selected for
our ASC approach.

Based on the Riemannian kernels, traditional learning meth-
ods operating in vector space can be exploited to classify
data points (i.e. acoustic feature matrix) on the Riemannian
manifolds for acoustic scene. For this work, we employ
the LibSVM [20] implementation on our pre-calculated Rie-
mannian kernel matrices for acoustic scene classification.
Moreover, in order to perform multi-class acoustic scene
classification with probability output, we adopt probabilistic
SVM classifier which investigates distance between input data
and hyperplane in the (kernel) feature space. One-versus-one
scheme is adopted due to its superior multi-class classification
performance [21]. As a result, we obtain posterior probability
pset(c|X) for input acoustic scene by performing Grassman-
nian kernel learning process demonstrated in this section.

2) Kernel-based local (slice-wise) similarity analysis: In
above section, we show our path to analyze acoustic scenes
using global information, which is conveyed by acoustic
feature matrix. In addition to global patterns, spectro-temporal
structures in short slice also contain rich discriminant informa-
tion for ASC. To this end, we carry out scene classification on
all acoustic vectors from sub-slices [x1, ...,xK ] using proba-
bilistic SVM with RBF kernel. Based on posterior probabilities
[p(c|x1)), ..., p(c|xK))] generated from discriminant model,
majority voting is conducted to produce scene-wise class score
as follows.

pslice(c|X) =
1

2
+

(
∑K

k=1 p(c|xk))− 1/2

K
s.t. X = [x1, ...,xK ]

(7)

C. Probability score fusion

To aggregate class scores generated from each feature space,
we introduce weighted score fusion method. Let c denote the
scene category index. The fusion weight is denoted by λc ∈
[0, 1]. Final score can be computed as follows.

scorec = λc × pset(c|X) + (1− λc)× pslice(c|X). (8)

The convex weighting factor λc, which governs contribu-
tions of two-level discriminant information distilled from both
global and local observations, can be empirically estimated
using validation set.

III. EXPERIMENTAL RESULTS

In this part, we present experimental validation of proposed
approach on real-world data.

A. Dataset and parameter settings

We validate proposed scheme using DCASE2016 Challenge
Task 1 dataset, which contains 15 classes of acoustic scenes.
The length of recording is 30 second, sampling frequency
and bit depth are set to 44.1 kHz and 16 bits, respectively.
In validation set, each class has 78 audio segments. The
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Fig. 2. ASC accuracy with different Fourier window and segmentation length

TABLE I
COMPOSITIONS OF ASC SYSTEMS IN COMPARISON

Feature Classifier
Method 1 Averaged Mel-log-spec. RBF SVM
Method 2 Averaged HoG-Mel-log-spec. RBF SVM
Method 3 Segmented HoG-Mel-log-spec. RBF SVM + voting
Method 4 Segmented HoG-Mel-log-spec. Proposed HKL

indices for train/validation split are provided. The evaluation
set includes 390 clips. The parameter γ in projection-RBF
Riemannian kernel was set to 1.2. Gaussian scaling parameter
and C regularization balancing weight in segment-wise SVM
classifier were set to 0.5 and 3, respectively.

B. Hyperparameters tuning

Recent articles revealed that several hyperparameters used
for acoustic feature extraction played key role for ASC [2],
[22], i.e. Fourier window length N and segmentation length
denoted by L (L = 30/K). In pursuit of optimal hyperpa-
rameter combination, we conducted grid search on each pair
(N,K) to examine classification performance on validation
set. Simple time-averaged Mel-log-spectrogram features were
applied with linear SVM classifier in the test. Overall accu-
racies correspond to hyperparameter combinations are shown
in Fig. 2. It can be seen that best accuracy reached to 81.20%
by choosing N = 8192, L = 2. These settings were applied
in following experiments. We hope the hyperparameter tuning
results can facilitate further research for ASC.

C. Results on validation set

To validated proposed approach, we perform experiments
using DCASE2016 challenge Task 1 dataset. First, exper-
imental comparison was drawn between four methods on
validation set. The four tests were designated to testify the
contributions of major components in proposed system and
we showed their characteristics in Tab. 1. The ASC results

TABLE II
FOLDER-WISE ASC ACCURACIES COMPARISONS ON VALIDATION SET (%)

Method 1 Method 2 Method 3 Method 4
f1 73.10 75.17 82.76 88.97
f2 59.66 68.62 82.41 86.21
f3 72.48 74.16 79.53 85.91
f4 76.71 74.66 80.14 84.59

TABLE III
CLASS-WISE ASC ACCURACIES COMPARISONS ON VALIDATION SET (%)

Method 1 Method 2 Method 3 Method 4
Beach 69.2 78.2 87.2 93.6
Bus 79.5 84.6 93.6 97.4
Cafe 52.6 53.9 83.3 87.2
Car 83.3 87.2 94.9 94.9
City 89.7 78.2 89.7 91.0

Forest 89.7 82.1 92.3 93.6
Grocery 89.7 84.6 89.7 91.0
Home 64.1 85.9 79.5 91.0

Library 66.7 67.9 85.9 88.5
Metro 74.4 79.5 87.2 92.3
Office 76.9 75.6 73.1 91.0
Park 35.9 56.4 68.0 73.1

Resident 61.5 58.9 61.5 68.0
Train 44.9 38.5 42.3 53.9
Tram 79.5 85.9 89.7 89.7

generated by using the four methods were demonstrated in
Tab. 2 and Tab. 3, in terms of folder-wise and category-
wise performance, respectively. By comparing results made by
first and second methods, we confirmed effectiveness of HoG
features for local spectro-temporal characterization. Significant
performance improvement can be seen from third column, in
which scheme of classification using frame-averaged acoustic
features were replaced by slicing / majority voting manner.
Finally, by examining the 4-th column, proposed approach
achieved superior classification precision in all 15 scene cat-
egories. Experimental comparisons proved the effectiveness
of proposed heterogeneous kernel learning approach which
improved ASC performance with large margin in both folder-
wise and class-wise evaluation.

D. Results on evaluation set

We further evaluated proposed scheme on evaluation set.
The optimal parameters estimated at validation stage were
adopted for the test. In a similar vein to previous test,
experimental comparison was drawn among four methods.
Tab. 4 presented classification accuracies. Besides, in order
to facilitate detailed comparison with other studies, we show
the confusion matrix in Fig. 3. As a result, we achieved
overall accuracy of 88.97%. We obtained 100% classification
for four scene classes, which are Bus, Forest path, Office and
Tram. The worse accuracy were obtained for three classes,

TABLE IV
ASC ACCURACIES COMPARISONS ON EVALUATION SET (%)

Method 1 Method 2 Method 3 Method 4
80.0 82.05 85.38 88.97
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Fig. 3. ASC confusion matrix on evaluation set

which are library (76.92%), residential area (76.92%) and train
(73.08%). Class-wise recognition performance is consistent
to that from validation data. Compared to other submissions
to DCASE2016 challenge Taks 1, Our system exhibit lower
variance in terms of classification accuracy among 15 scene
classes [2]. It is noteworthy that proposed method obtained
76.92 % precision which outperformed the best results (69.2%)
reported in DCASE2016 challenge.

IV. CONCLUSION

In this paper, a heterogeneous kernel-based learning ap-
proach for acoustic scene classification had been proposed
which can effectively characterize discriminant in audio data.
Unlike conventional methods which adopt single feature vector
to represent acoustic scene, we employ a matrix consists
of multiple acoustic feature vectors extracted from slices.
Furthermore, we investigate set-to-set similarities in multiple
kernel feature spaces which are anticipated to be well-suited
to acoustic scene classification task, such as between-subspace
principal angle metric defined in Euclidean space and Rieman-
nian distance on Grassmann manifold. Besides, in order to
incorporate discriminant information among multiple feature
spaces, we employed optimal fusion rule for better classifica-
tion. To validate proposed approach, we carried out extensive
experiments on DCASE2016 challenge Task 1 dataset. The test
results demonstrated through comparisons with other methods.
In addition, the proposed approach can be further incorporated
with multiple kernel learning and metric learning frameworks
and those will be left to our future works.
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