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Abstract—In this paper, features based on the sparse rep-
resentation (SR) are proposed for the classification of speech
units. The proposed method employs multiple dictionaries to
effectively model variations present in the speech signal. Here, a
Gaussian mixture model (GMM) is built using spectral features
corresponding to frames of all the examples of a speech class.
Multiple dictionaries corresponding to different mixture are
learned using the respective speech frames. Given a train/test
speech frame, minimum spectral distance measure from the
GMM means is employed to select an appropriate dictionary.
The selected dictionary is used to obtain the sparse feature
representation, which is used for the classification of speech
units. The effectiveness of the proposed feature is demonstrated
using continuous density hidden Markov model (CDHMM) based
classifiers for (i) classification of isolated utterances of E-set of
English alphabet, (ii) classification of consonant-vowel (CV) seg-
ments in Hindi language and (iii) classification of phoneme from
TIMIT phonetic corpus. Experimental results reveal that the
proposed features outperforms existing feature representations
for various speech units classification tasks.

Index Terms—Sparse representation, speech recognition, dic-
tionary learning.

I. Introduction

In recent years, sparse representation (SR) based features

are used for speech recognition where, given a segment of

speech signal (frame) and a dictionary, a sparse feature vector

is computed for the classification/recognition task [1], [2]. The

SR based signal processing is supported by an observation

that signal can be written as linear combination of minimum

number of atoms of a dictionary [2]. In the literature, methods

using SR for speech recognition can be broadly classified into

two categories : (i) exemplar based approaches, and (ii) feature

based approaches.

Exemplar based approaches directly uses the sparse vector

for classification, while a feature based approach uses the

derived sparse vector as a feature in a classifier. In particular,

speech recognition in exemplar based approaches is performed

either using the atom activations of the estimated sparse

feature vector [3], [4], or using the minimum reconstruction

error [5] between the test exemplar and its estimate. On the

contrary, in feature based approaches, either the derived sparse

vector [1] or the estimate of speech is used as a feature [6] for

acoustic modeling. For computing the sparse feature vector,

approaches in [3], [4] use a single overcomplete dictionary

while [5] use multiple dictionaries corresponding to different

speech units. A gradient descent approach is used to learn

a single overcomplete dictionary using the spectro-temporal

representation in [1], while mel frequency cepstral coefficients

(MFCC) of training speech data (frames) are used to obtain

dictionary atoms in [6] and [2]. However, for a given train/test

frame, in [6] and [2] atoms for dictionary are seeded from the

training data, which results in high computational complexity.

In this work, we propose a novel SR based method to

derive features from a speech signal for the tasks in speech

recognition. Proposed feature extraction method consists of

two stages : (i) dictionary learning, and (ii) sparse coding.

In the first stage, multiple dictionaries are learned for each

speech unit and the second stage uses a sparse solver to obtain

the sparse feature. The speech signal, being generated from

a natural system has a lot of variations in it. In order to in

effectively modeling the variations present in the speech signal

the proposed method employs multiple dictionaries. This is

achieved by clustering similar speech frames, and a single

dictionary is learned for each cluster.

In contrast to existing approaches (such as in [5], [7])

which uses K-means clustering or K-nearest neighbors (KNN)

respectively, we employed a Gaussian mixture model (GMM),

which is a generative model, and is more efficient in modeling

the variations among frames of same speech unit. GMM can

be built using either raw speech or spectral feature e.g., MFCC

as an initial representation. In this work, a GMM is used to

model representations corresponding to all the frames in the

training data of each class. A dictionary for each mixture in

a GMM is learned from the respective frames, resulting in

multiple dictionaries for each speech unit. For each train/test

frame, a minimum spectral distance measure is employed to

select an appropriate dictionary. The selected dictionary is then

used to obtain the sparse vector, which is used as a feature

representation for the classification task.

The proposed method is similar to [1] where sparse vector

is used as a feature. However, we propose to use multiple

dictionaries as compared to a single overcomplete dictionary

used in [1]. In addition, our method uses both raw speech

samples and MFCC to learn different signal adaptive dictio-

naries compared to spectro-temporal representation used in

[1]. This work also employs and compares the performance of

different dictionary learning algorithms namely greedy adap-

tive dictionary (GAD) [8], K-singular value decomposition

(KSVD) [9], method of optimal directions (MOD) [10] and

principal component analysis (PCA) [11] to learn dictionaries.

Contributions of this work are: (a) GMM to derive mul-

tiple dictionaries for each speech class, (b) comparison of
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dictionaries derived using PCA, GAD, KSVD and MOD based

dictionary learning algorithms, and (c) deriving proposed

sparse features using both MFCC and raw speech as initial

representation.

The organization of the paper is as follows : Section II

describes basics of sparse coding for speech signals. SR

based proposed feature extraction method is explained in

section III, and details about various experimental settings is

provided in Section IV. A detailed discussion about various

speech classification experiments performed and experimental

observations is provided in Section V. Finally, the paper is

summarized in section VI.

II. Sparse coding for speech signals

The speech signal corresponds to a high dimensional data

captured using a microphone, however the total number of

generating causes for signal are very less as compared to

recorded observations [12]. Thus, the information relevant to

the underlying process of generating speech signal is generally

low dimensional as compared to the recorded observations

[12]. This property can be exploited for estimating efficient

representations for a speech signal and sparse coding is one

of the methods to estimate such representations [13]. In recent

years sparse coding based signal processing has been applied

to various speech processing applications such as speech

recognition [1], speech enhancement [14], speech coding [15]

and voiced/nonvoiced detection [16].

The basic idea in SR based signal processing is supported

by an assumption that the signal is sparse with respect to a

suitable dictionary/basis. Assuming that a speech frame s ∈ RN

is represented using a dictionary Ψ ∈ RN×N as s = Ψα, such

that α ∈ RN is H (H ≪ N) sparse, i.e., α has only H significant

coefficients. Given s and Ψ, the estimate of sparse vector α

can be obtained as

α̂ = argmin
α

f (α) s.t. ‖s −Ψα‖22 < ǫ, (1)

where ǫ is the error tolerance constant, and function f (.) is

used to promote sparsity [17]. f (.) can be solved using l0 or l1-

norm, however, in this work l0-norm is employed, and equation

(1) is solved using orthogonal matching pursuit (OMP) [18],

[19]. The obtained estimate of α̂ can be used to estimate

speech signal as ŝ = Ψα̂. Most of the existing SR based

features in speech recognition use estimate of speech signal

(ŝ) as a feature for acoustic modeling [2], [6]. On the contrary,

method proposed in this paper uses the obtained sparse vector

(α̂) as a feature.

III. Proposed sparse coding based features for speech signal

In this work, we propose a novel SR based feature for the

tasks in speech recognition. The proposed method employs

multiple dictionaries and thus in the dictionary learning step, a

GMM is built for each speech class using MFCC. A dictionary

corresponding to each mixture (obtained using GMM) is

obtained using either MFCC or raw speech samples as a

representation. Since multiple dictionaries are learned for each

❆✸

✼✸

✼✹ ❆✹

✼✶
✼✷
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Fig. 1: Graphical representation of dictionary learning approach for a
given speech unit class. Each point in two-dimension (2-D) represents
a speech frame corresponding to a speech unit.

speech units an appropriate selection criterion must be used to

select dictionary for each speech frame. Thus, the sparse fea-

ture extraction step employs MFCC from each train/test frame

to select an appropriate dictionary using minimum spectral

distance measure (between MFCC of each frame and means

of Gaussian components). The selected dictionary is used to

compute the SR, which is used as the feature representation for

the speech units classification task. A pictorial representation

of the proposed dictionary learning method is shown in Fig.

1. It shows a two dimensional representation corresponding to

all the frames of training speech signals available for a single

speech unit. These speech frames are modeled using a GMM,

and this figure, symbolically shows four mixtures along with

their corresponding means.

In GMM, each point has a soft assignment, i.e. it belongs

to each cluster to a different degree. This degree is based

on the probability of the point being generated from each

cluster’s (multivariate) normal distribution, with cluster center

and cluster covariance as its mean and covariance. This soft

assignment is more appropriate for clustering the data into

different clusters as samples/points having similar probabilities

for two clusters may be excluded from the data used to train

dictionaries.

Consider M speech frames {si}
M
i=1 of lth speech class (ob-

tained from the training examples of a class) arranged in

a matrix Sl as columns such that Sl = [s1, s2, ...., sM]. Here,

l = 1, 2, . . . , L is the total number of classes. All the speech

frames in Sl are modeled using a GMM
∑K

k=1 πkN(Sk |µk,Σk)

with k = 1, 2, ...,K Gaussian mixtures, where µk is the mean

vector corresponding to kth mixture. Let mk denotes total

number of training frames belonging to kth Gaussian, arranged

in a matrix Sl
k
=
[

s1, s2, ...., smk

]

, where
∑K

k=1 mk = M. The

following objective function can be used to learn a sub-

dictionary Ψl
k for the data corresponding to each Gaussian

mixture (Sl
k
):

(

Ψ̂
l

k , Λ̂
l

k

)

= argmin
Ψl

k , Λ
l
k

f (Λl
k) s.t. ‖Sl

k −Ψ
l
kΛ

l
k‖

2
F < ǫ, (2)
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Fig. 2: Block diagram representation of testing in the proposed approach. [s1, s2, ..., sM] represents M speech frames of a speech unit and
[α̂l1 , α̂l2 , ..., α̂lM ] represents feature representation derived using dictionaries of lth class. pl denotes the likelihood corresponding to lth class HMM.

where ǫ is a constant, ‖ . ‖F is the Frobenius norm and Λl
k

is the sparse weight matrix of Sl
k

over sub-dictionary Ψl
k.

Equation (2) is a joint optimization problem of solving Ψl
k

and Λl
k, which can be solved by alternatively optimizing Ψl

k

and Λl
k. The mean vector corresponding to kth mixture of

lth speech class is denoted as µl
k
. Thus, K dictionary pairs

{

Ψl
k , µ

l
k

}

corresponding to same speech unit are obtained.

The same dictionary learning method is employed on the

data corresponding to L different speech units resulting in KL

(KL = C) total such pairs.

For a speech frame si, the best fitted dictionary (corre-

sponding to GMM of each class) is selected based on its

minimum euclidean distance from the mixture means 1 i.e.,

j∗ = argmin
j

‖si − µ j‖2 , j = 1, 2, ..., k. The corresponding

sub-dictionary Ψl
j∗ is used to obtain an estimate of the sparse

vector αi corresponding to each speech frame si by solving:

α̂i = argmin
αi

‖si −Ψ
l
j∗αi‖

2
2 s.t. ‖αi‖0 < H. (3)

Sparse vector α̂i ∈ R
N obtained after solving equation (3)

is used as a feature representation for various speech units

classification tasks.

IV. Experimental Setup

The proposed features are used to build the continuous

density hidden Markov model (CDHMM) based classifier for

classification of (i) isolated utterances of E-set of English

alphabet [20], (ii) consonant-vowel (CV) segments in Hindi

language [20] and (iii) phoneme from TIMIT phonetic corpus

[21]. All results reported in this paper are average results for

10 trials. The number of mixture in GMM during dictionary

learning is five i.e., K = 5, and this number is obtained

empirically. Orthogonal matching pursuit (OMP) [18] is used

to solve equation (3) with a fixed value of sparsity (H) as

N/2. A speech frame is excluded from the data used to train

dictionary, if the difference in probabilities corresponding to

two clusters (of the GMM) is less than 0.5 (this value is

obtained empirically). Speech used for experiments is sampled

1In this work, these mixture means are also referred to as centroids of
dictionaries.

at 16 kHz and is processed at a frame size of 25 ms with 10 ms

shift. Both raw speech sample and MFCC are used as an initial

representation to derive the proposed feature representation.

The raw speech sample results in a 400-dimensional initial

representation, while MFCC used is standard 39-dimensional.

In MFCC, first 12 features are mel frequency cepstral coeffi-

cients and the 13th coefficient is the log energy. The remaining

26 coefficients are the delta and acceleration coefficients.

In all the experiments, a left-to-right CDHMM is built for

each class with varying number of states and the number

of components for the state specific GMM. Here, we have

considered diagonal covariance matrices for the state-specific

GMM. During training L CDHMM models are built for L

different speech classes. The testing strategy employed in

this work is shown in Fig. 2. During the testing stage, for

a given speech utterance, the sparse features are obtained

corresponding to the dictionaries of all the classes. These

features are then fed to the CDHMM corresponding to each

class and the unit is classified to the class giving maximum

posterior.

The performance of the proposed approach is evaluated

using four types of complete dictionaries i.e., PCA based,

KSVD, GAD and MOD. In order to have a fair comparison,

the same approach is followed i.e., GMM is first used on

the data of each class and these dictionaries are learned on

data belonging to each mixture. For PCA based dictionary

Ψl
k, the equation 2 can be solved by conventional method of

least squares while for other dictionaries standard dictionary

learning algorithms are available. The results reported for E-

set and TIMIT are the average classification accuracy, while

for Hindi CV segments results are the average classification

accuracy along with 95% confidence interval obtained for 5-

fold stratified cross-validation.

V. Experimental Results

In this section, we evaluate the performance of proposed

features for classification of individual speech units. The effect

of initial representation (raw speech samples or MFCC) is

studied at GMM modeling during dictionary learning and

feature extraction step. The performance of the proposed

feature is also compared with existing SR based features.
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TABLE I: Classification accuracy (in %) of CDHMM-based classifier with 5 states and 3 mixture in each state when different initial
representations are used to derive the proposed feature representation. GMM D and Feature Extraction represents the representation used
for GMM modeling during dictionary learning and feature extraction respectively. Here, the dictionary used is PCA based.

Initial Representation Dataset

GMM D Feature Extraction E-set Hindi-CV TIMIT

MFCC MFCC 85.47 45.37 ± 0.73 61.27

Raw Raw 75.19 37.51 ± 0.79 55.91

MFCC Raw 98.13 65.07 ± 0.83 70.81

TABLE II: Classification accuracy (in %) of CDHMM-based classifier using the proposed features. Ns and Q indicates number of HMM
states and number of GMM components in each state. FRPCA

, FRKS VD
, FRMOD

and FRGAD
are labels corresponding to the proposed feature

deriveds using PCA, KSVD, MOD and GAD dictionaries , respectively.

Dataset

E-set Hindi CV

Classifier Feature (Ns , Q) Accuracy Accuracy

CDHMM MFCC (5 , 3) 87.95 48.87±0.77

SVM with

HMM-IMK
MFCC (5 , 3) 95.93 59.32±0.85

CDHMM S RNN [2] (5 , 3) 97.58 64.03±0.73

CDHMM S RP [7] (5 , 3) 97.38 61.08±0.87

CDHMM

FRGAD
(5 , 3) 86.14 52.03±0.79

FRKS VD
(5 , 3) 96.53 63.45 ±0.76

FRPCA
(5 , 3) 98.13 65.07±0.83

FRMOD
(5 , 3) 97.47 64.79±0.71

TABLE III: Classification accuracy (in %) of CDHMM-based classifier with 5 states and 3 mixtures in each state using the proposed
features for phoneme (TIMIT) classification. FRPCA

, FRKS VD
, FRMOD

and FRGAD
are labels corresponding to the proposed feature derived using

PCA, KSVD, MOD and GAD dictionaries , respectively.

Feature MFCC PLP S RNN [2] l1 [1] S RP [7] FRGAD
FRKS VD

FRPCA
FRMOD

Accuracy 64.5 68.47 70.74 69.38 69.83 62.31 68.15 70.81 70.13

A. Significance of initial representation

In this experiment, we analyze the effect of initial represen-

tation while deriving the proposed feature. Both raw speech

samples and MFCC are used as initial representation for the

GMM modeling during dictionary learning and feature extrac-

tion. Consider an example where MFCC is used for GMM

modeling and raw speech samples are used for dictionary

learning. Here, MFCC representation is modeled using GMM,

so that a dictionary corresponding to data of each mixture

can be learned. However, the dictionary learning and feature

extraction is performed using the raw speech samples as an

initial representation.

The results obtained with different initial representations

for GMM modeling during dictionary learning and feature

extraction are shown in Table I. These results are obtained

using a PCA based dictionary. When raw speech samples are

used to build GMM (during dictionary learning) there are more

chances of choosing a sub-dictionary from GMM of different

classes (for most of the frames), thus there is a reduction in

classification accuracy. On the contrary, while building GMM

from MFCC, the dictionary selection is more appropriate as

now frames with similar spectral characteristics are clubbed

into each Gaussian mixture. MFCC used in the feature extrac-

tion process model only spectral features based on auditory

response. Another possible reason for better performance of

raw speech samples while deriving sparse features (when

MFCC are used to build GMM) is the possibility of capturing

the inherent variations present in raw samples. Hence, for

building the GMM (during dictionary learning) and selecting

the dictionary, MFCC are used as feature. On the contrary,

the proposed SR features are derived directly from raw speech

samples.

B. Comparison with other features/approaches

The proposed features corresponding PCA, KSVD, MOD

and GAD dictionaries are labeled as FRPCA
, FRKS VD

, FRMOD

and FRGAD
, respectively. Performance of proposed feature is

compared to CDHMM-based classifier using standard MFCC

features and SVM-based classifier with HMM-based interme-

diate matching kernel (HMM-IMK) discussed in [20]. The

comparison is also done with the SR based features proposed

in [2], where N-nearest neighbors are used to seed dictionary

atoms, with MFCC as initial representation (labeled as S RNN).

In addition, SR based features proposed in [7], where K-means

clustering is used to learn multiple dictionaries (labeled as

S RP) is also used for comparison. The comparison of results

for E-set and Hindi CV dataset is shown in Table II. The
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TABLE IV: Classification accuracy (in %) of CDHMM-based
classifier with 5 states and 3 mixtures in each state using the proposed
features for speech corrupted by 0 dB babble noise. FRPCA

is label
corresponding to the proposed feature derived using PCA dictionary.

Classification Accuracy

Feature E-Set Hindi CV TIMIT

MFCC 27.37 16.12±0.78 19.94

S RNN [2] 30.28 18.76±0.81 21.47

FRPCA
32.17 19.87±0.74 22.94

comparison of classification accuracy for TIMIT dataset is

shown in Table III. For TIMIT dataset, MFCC, perceptual

linear prediction (PLP) features and a SR based features

proposed in [1] (labeled as l1) are also used for comparison

purpose.

These results reveal that the proposed feature representation

derived using a PCA based dictionary outperforms existing

features. The proposed method employs multiple dictionaries,

where a single dictionary is learned for data belonging to a

GMM mixture. This data in a single mixture is similar and

can be modeled using a complete dictionary, making PCA

an appropriate choice for dictionary. On the contrary, other

dictionary learning methods e.g., KSVD perform better when

the dictionary learned is overcomplete. This reason may be

attributed for better performance of PCA based dictionary in

our method.

The performance of the proposed features is also evaluated

in noisy conditions. The speech segments of the datasets used

are corrupted by additive babble noise taken from NOISEX-92

database at 0 dB signal to noise ratio (SNR) [22]. Comparison

of the proposed features for classification of noisy speech units

is given in Table IV. It can be observed that even in case

of noisy speech, the proposed feature outperforms existing

features.

VI. Summary

In this work, principles of sparse representation are used to

obtain novel features for speech units classification. We pro-

pose to use multiple dictionaries for the computation of sparse

vector which is used as a feature representation. Multiple

dictionaries helps in effectively modeling the variations present

in different speech signals corresponding to the same speech

unit, will help in achieving better classification accuracy. In

this work, four dictionary learning methods namely PCA,

KSVD, MOD and GAD are employed to obtain dictionaries.

The sparse feature vector corresponding to the PCA-based

dictionary results in more discrimination as compared to

other dictionaries. Classification results using three databases

support the claim that the proposed sparse feature can be used

as an alternative to existing features. In future, we would like

to extend this work from classification of individual speech

units to automatic speech recognition.
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