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Abstract—Vocal Tract Length Normalization (VTLN) is a very
important speaker normalization technique for speech recog-
nition tasks. In this paper, we propose the use of Gaussian
posteriorgram of VTLN-warped spectral features for a Query-
by-Example Spoken Term Detection (QbE-STD). This paper
presents the use of a Gaussian Mixture Model (GMM) framework
for estimation of VTLN warping factor. This GMM framework
does not require phoneme-level transcription and hence, it can be
useful for unsupervised tasks. We propose the iterative approach
for VTLN warping factor estimation with two GMM training
approaches, namely, Expectation-Maximization (EM) and De-
terministic Annealing-Expectation Maximization (DAEM). The
VTLN-warped Gaussian posteriorgram gave the better QbE-
STD performance. The performance of TIMIT QbE-STD was
investigated with different evaluation factors, such as a number
of Gaussian components in GMM, various local constraints, and a
number of iterations in VTLN warping factor estimation. VTLN-
warped Gaussian posteriorgram reduces the speaker-specific
variation in Gaussian posteriorgram and hence, it is expected
to give better performance than Gaussian posteriorgram.

I. INTRODUCTION

The problem of retrieving the audio documents and detect

the presence of query with the help of its spoken example is

known as Query-by-Example Spoken Term Detection (QbE-

STD) [1]. QbE-STD directly exploits the acoustic-level infor-

mation for matching between spoken documents and a spoken

query without transcribing them into phonemes or words.

QbE-STD is important for low-resourced languages and under

non-mainstream conditions and hence, it was also called

an unsupervised STD [1], [2]. As a part of the MediaEval

campaign, the Spoken Web Search (SWS) was started in 2011

[3]. This task involves a language-independent audio search

for low-resource languages, which has been held almost every

year in MediaEval campaign [1].

QbE-STD task involves the matching between the template

representation of spoken query and audio document. The

spoken realization of the same word uttered from different

speakers may have different duration because the different

physiological factors are associated with speech production

mechanism. The Segmental Dynamic Time Warping (SDTW)

was used to perform feature sequence matching between

the spoken query and the test utterance [4]. In SDTW, test

feature sequence is separated into overlapping segments that

are having the same length as a query. The SDTW needs to be

executed multiple times to detect the presence of spoken query,

which increases computational requirements. To overcome

this computational requirement, subsequence Dynamic Time

Warping (subDTW) [5] or non-segmental version of DTW

were proposed in [6], [7].

For QbE-STD tasks, a spoken data is converted into the

posteriorgram representation that resembles linguistic informa-

tion. The feature vectors represent the acoustic properties such

as formants of the vocal tract. For the better QbE-STD sys-

tem, feature vectors should represent the linguistic (phoneme)

information rather than the speaker-specific information. Un-

supervised Gaussian posteriorgram and supervised phonetic

posteriorgrams are extensively used to represent audio data

[4],[8]. Due to distribution learning capability of Gaussian-

Bernoulli Restricted Boltzmann Machines (GBRBM), RBM-

based posteriorgrams were found to be comparable to Gaus-

sian posteriorgrams. Restricted Boltzmann Machines (RBM)

and Deep Belief Network (DBN) were used for QbE-STD

tasks as an alternative to Gaussian posteriorgrams [9], [10].

This paper presents the use of Vocal Tract Length Nor-

malization (VTLN) warping factor estimation for its appli-

cation to QbE-STD. The conventional method (such as Lee-

Rose method [11], [12]) for VTLN warping factor estimation

requires a phoneme-level transcription whereas the proposed

Gaussian mixture model (GMM) framework does not require

a phoneme-level transcription. In this paper, we refer to the

Lee-Rose method of VTLN warping factor estimation as

Hidden Markov Model (HMM)-based VTLN warping factor

estimation (which is a supervised approach as it requires

manual phonetic transcription). In addition, the proposed ap-

proach uses GMM that can also be exploited for Gaussian

posteriorgram computation. Hence, the novelty of presented

work is to exploit trained GMM for VTLN warping factor

estimation and then use VTLN-warped features to re-train the

GMM and compute the Gaussian posteriorgram.

II. VOCAL TRACT LENGTH NORMALIZATION

It has been studied in the speech processing literature that

for a uniform vocal tract model, the formants of the vocal tract

are inversely related to the length of the vocal tract [13]. The

formant frequencies of vocal tract system are given by,

Fn =
(2n− 1)v

4L
, n = 1, 2, · · · , (1)

where L = length of the vocal tract (which is typically 13

cm to 18 cm [12]) and v = velocity of the sound wave

(≈ 344 m/s, at sea-level and 70o F [13]). For instance,

formant frequencies of two speakers, namely, A and B having
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average vocal tract length LA and LB , respectively, are given

by FA ∝ 1
LA

and FB ∝ 1
LB

. This results into FA = αABFB ,

where αAB represents VTLN warping factor associated with

only two speakers, namely, A and B. In practice, the VTLN

warping factor is estimated from each utterance w. r. t. to

a general speaker model. Human vocal tract length can vary

from nearly 13 cm for adult female up to 18 cm for adult

male [12]. Due to this, formant frequencies can deviate by

25 % among various speakers. To reflect this deviation, the

VTLN warping factor is generally taken from a set of 13

distinct values (at equally spaced points between 0.88 and

1.12) [12]. The introduction of the VTLN warping factor

creates an adjustment in the frequency analysis to cope with

such spectral scaling variations. In general, this is performed

by considering different versions of the Mel filterbank (whose

center frequencies are scaled linearly). In practice, warping

factors are obtained via statistical modeling framework, i.e.,

Maximum Likelihood Estimation (MLE) [11]:

α̂ = arg max
0.88≤α≤1.12

P (Xα|λT ,W ). (2)

Since a closed-form expression of eq. (2) is not available,

MLE is computed for all the different warped feature vector

xα
t against model λT for a given transcription, W .

A. GMM-based VTLN Warping Factor Estimation

A GMM-based framework differs from an HMM-based

framework in terms of the objective function used to estimate

the VTLN warping factor. The current work is focused on the

linear warping factor estimation which is implemented in the

frequency-domain. To that effect, we used Gaussian Mixture

Model (GMM) likelihood scores to obtain the VTLN warping

factor. The process of VTLN warping factor estimation and

modified posteriorgram feature extraction is as follows.

1) Feature Extraction: Compute warped features, i.e., X =
[xα

1 , xα
2 , . . . xαT ] that carries information from different

warping factors, namely, α = 0.88, 0.90, · · · , 1.12. Note

that the number of distinct values of α is user defined

and hence, can be empirically decided.

2) Initial Training: Train the GMM without warped fea-

tures, i.e., xα
t , where α = 1, i.e., no VTLN warping. Let

the initial GMM model be

λinit ∼ (µinit,Σinit, winit). The GMM trained on large

data comprises male and female speakers, is expected to

have speaker invariant characteristics.

3) VTLN warping factor estimation: MLE is computed for

all the different warped feature vectors xα
t against the

initial model, λinit, i.e.,

α̂ = arg max
0.88≤α≤1.12

P (Xα|λinit). (3)

4) Retraining GMM: GMM is re-trained on this opti-

mal warped features, i.e., xα̂. This new model λr ∼
(µr,Σr, wr) is different from the earlier GMM model

λinit.

5) Posteriorgram Computation: Now, the VTLN warping

factors of test and query features are estimated against

the new GMM model λr. Gaussian posteriorgrams are

computed based on the estimated VTLN warping fac-

tors.

The proposed idea of GMM-based VTLN warping factor

estimation can be explained as follows: Let VTLN-warped

features be Xα, (0.88 ≤ α ≤ 1.12). Initially, the GMM

is trained on unwarped features, i.e., α = 1 and hence,

(Xα ≡ X1), i.e.,

λinit = argmax
λ

P (X1|λ). (4)

Now, VTLN warping factor estimation is performed based on

the maximum likelihood estimates (MLE), i.e.,

α̂ = argmax
0.88≤α≤1.12

P (Xα|λinit). (5)

In the next iteration, we consider VTLN-warped features to

build GMM and new model parameters are given by:

λ(1) = argmax
λ

P (X α̂|λ). (6)

This implies P (X α̂|λ(1)) ≥ P (X1|λinit). Thus, maximiza-

tion in likelihood results into better Gaussian posteriorgram

representation in the following iterations.

Next, we will investigate the relation between two VTLN

warping factor estimates on MFCC feature sets. To investigate

the effectiveness of the GMM-based VTLN warping factor

estimation, the VTLN warping factors are estimated using

the GMM and HMM-based approaches for 3696 training

utterances of TIMIT database. We employed linear frequency

scaling to implement VTLN, i.e., α = 0.88, 0.90, · · · , 1.12.

Fig. 1 displays the mapping between these two VTLN warping

factor estimates using a supervised Lee-Rose method [12]

and the proposed unsupervised method. The diagonal band

in Fig. 1 indicates that most of the warping factors obtained

through these two techniques are nicely correlated with each

other. Moreover, it was observed that around 30-40 % utter-

ances have the same VTLN warping factor for HMM-based

estimation and GMM-based estimation. This analysis shows

the potential of proposed GMM-based VTLN warping factor

estimation under the absence of transcription.

III. EXPERIMENTAL SETUP

A. Experimental Dataset

We used TIMIT training and testing dataset without /SA/

sentences to train the GMM. TIMIT test dataset having (1344)

utterances (8 utterances per speaker) were used as audio doc-

uments (168 speakers). We have used 84 queries that contain

7 to 20 occurrences in the testing dataset and having at least 6

letters. Spoken queries are taken from the training dataset. All

the queries are distributed across all the speakers such that at

least one speaker contains at least one query. The performance

of QbE-STD is measured in terms of precision@N (p@N) and

Mean Average Precision (MAP) [2]. The value of N varies

according to the query (from 7 to 20). Besides TIMIT dataset,

we have also used MediaEval SWS 2013 dataset. MediaEval

SWS 2013 contains two sets, i.e., Dev set (505 queries) and
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Fig. 1: Estimated values of VTLN warping factor using two

different methods, namely, HMM (supervised) and GMM

(unsupervised) on TIMIT training database.

Eval set (503 queries). The performance of SWS QbE-STD

is evaluated in terms of Maximum Term Weighted Value

(MTWV) [14].

B. Feature Extraction

In this paper, MFCC [15] and PLP [16] features are used.

The features are extracted on 25 ms window duration, 10 ms

frame shift and 26 Mel subband filters and 13 coefficients

along with their delta (∆) and delta-delta (∆2) features are

considered. MFCC and PLP features are extracted using the

Hidden Markov Model Toolkit (HTK) [17].

C. Speech Activity Detection

The phone posteriors were computed by applying the open

source Brno University’s phoneme recognizer [18]. Czech

(CZ), Hungarian (HU), and Russian (RU) phonetic recognizer

systems were trained on the CZ, HU and RU SpeechDat-

E databases. We performed speech activity detection (SAD)

using all the phone posteriorgrams (i.e., CZ, HU, and RU).

We considered the average of the posterior probability of non-

speech units from CZ, HU and RU to perform SAD.

D. Searching System

The searching subsystem consists of subDTW as searching

algorithm [5]. The local distance between two posterior vectors

is computed using symmetric Kullback-Leibler (KL) diver-

gence [9]. In addition, pseudo relevance feedback is employed

onto first 25 % retrieved documents (i.e., 0.25 × 1344 = 336

in this paper) and we considered top-5 hits as pseudo-relevant

example [19].

IV. EXPERIMENTAL RESULTS

A. Effect of Local Constraints (LC)

We analyze the performance of QbE-STD for various local

constraints of DTW. Fig. 2 shows three different local con-

straints for DTW-based searching. The relative temporal mis-

match between query and reference due to different speaking

rates by various speakers may require additional treatments
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Fig. 2: Types of local constraints used in this study: (a) LC1,

(b) LC2, and (c) LC3.

Table 1: Effect of local constraints (LC) on TIMIT QbE-STD

systems (p@N performance)

Local
VTLN

p@N MAP
constraints MFCC PLP MFCC PLP

LC1

×
29.69 31.57 30.38 32.25

(32.98) (35.66) (35.98) (37.89)

X
34.47 36.92 35.67 39.28

(38.75) (46.90) (42.41) (49.20)

LC2

×
33.70 36.36 34.84 37.12

(41.39) (41.68) (44.06) (43.66)

X
37.95 41.11 40.40 42.95

(46.20) (50.69) (50.18) (52.58)

LC3

×
26.35 28.87 27.75 28.86

(29.66) (31.45) (32.51) (33.11)

X
31.59 33.35 32.28 34.42

(35.17) (41.38) (37.52) (42.76)

(The number in the brackets indicates the performance after pseudo
relevance feedback. × = No VTLN, X = VTLN)

in the search algorithm. In particular, locality consideration

while computation of accumulated distance matrix. The feature

alignment is performed by similarity matching of consecutive

features by considering different local constraints.

Table 1 shows the performance of QbE-STD systems for

different local constraints, namely, LC1, LC2 and LC3. It

can be observed from Table 1 that LC2 performs better than

other local constraints, probably due to its ability to capture

a wide range of features along test utterances. For each

local constraint, it can be also observed that VTLN-warped

Gaussian posteriorgrams improve QbE-STD performance over

Gaussian posteriorgrams.

B. Number of Iterations

In the proposed approach for VTLN warping factor esti-

mation, we initially build a GMM on unwarped (i.e., α = 1)

features and estimate the appropriate VTLN warping factor us-

ing MLE. Now, new VTLN-warped features are used to build

a GMM and VTLN warping factor estimation. This process

can be executed in iterative manner till VTLN warping factor

estimates or few finite times. In this paper, we examined the

effect on QbE-STD performance till 5 iterative optimization.

Table 2 shows the performance with various number of

iterations used in VTLN warping factor estimation. It can be

observed that performance improves as the number of iteration

increases. After a certain number of iterations, performance
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saturates that might be due to possible overfitting to training

dataset.

Table 2: Performance (p@N) of TIMIT QbE-STD systems

with various number of iterations

# iter
p@N MAP

MFCC PLP MFCC PLP

× 33.69 36.36 34.83 37.11

1 37.94 41.11 40.39 42.95

2 39.71 42.85 41.99 44.71

3 40.14 43.29 42.92 45.31

4 41.67 43.36 43.57 45.49

5 41.63 43.60 43.70 45.35

( × indicates No VTLN, and 1-5=number of iterations used to etimate
VTLN warping factor)

C. Number of Gaussian

The number of Gaussian components in Gaussian posteri-

orgram plays an important role in QbE-STD tasks [4], [6]. In

this Section, we investigate the effect of the number of mixture

components used in VTLN warping factor estimation on QbE-

STD tasks. In particular, we considered 64 and 128 mixture

components for GMM training and VTLN warping factor

estimation. It can be analyzed from Table 3 that an increasing

number of mixture components improves the performance

of a QbE-STD system. In addition, performance using the

proposed approach is better than the Gaussian posteriorgram.

This finding matches a previous study reported in [6]. This

might be because of the increasing number of clusters better

represents the speech signal at the frame-level. However, in-

creasing number of Gaussians demands additional processing

and storage cost and hence, we restrict our experiments till

128 number of clusters. Performance is further improved with

the use of pseudo relevance feedback.

Table 3: Effect of the number of Gaussians on TIMIT QbE-

STD systems on performance (p@N)

NG VTLN
p@N MAP

MFCC PLP MFCC PLP

64
×

31.54 32.84 32.9 33.98
(39.96) (41.77) (42.95) (43.03)

X
37.27 35.63 43.3 37.94

(39.07) (43.49) (46.93) (46.01)

128
×

33.7 36.36 34.84 37.12
(41.39) (37.12) (44.06) (43.66)

X
37.95 41.11 40.40 42.95

(46.20) (42.95) (50.18) (52.58)

(The number in the brackets indicates the performance after pseudo
relevance feedback. NG=Number of Gaussians, × = No VTLN, and
X = VTLN)

D. Deterministic Annealing Expectation Maximization

(DAEM)

Deterministic Annealing Expectation Maximization

(DAEM) is an alternative to Expectation Maximization

problem where maximization of likelihood problem is
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Fig. 3: Values of ζ at every iterations.

posed as minimizing free energy [20]–[22]. This results

into modified posterior function that takes into account

annealing factor ζ that is inversely proportional to the

temperature. The parameters of GMMs in EM framework,

i.e., θ := {πk, µk,Σk}
K
k=1 can be estimated using EM

algorithm. The class assignments for each observation vector

ot can be made based on the posterior probabilities which is

given by [22]:

γk
t = Eθ0 [Z

k
t ] =

π̃kN (ot; µ̃kΣ̃k)
∑K

k=1 π̃kN (ot; µ̃kΣ̃k)
, (7)

where θ0 := {π̃k, µ̃k, Σ̃k}
K
k=1 is old parameter values. For

DAEM, eq. (7) is modified by annealing parameter ζ as [22]:

γk
t = Eθ0 [Z

k
t ] =

(π̃kN (ot; µ̃kΣ̃k))
ζ

∑K

k=1(π̃kN (ot; µ̃kΣ̃k))ζ
. (8)

The values of ζ as in Fig. 3. Here, we perform anti-

annealing and annealing in DAEM algorithm. As discussed

in sub-Section IV-B, we used DAEM against EM for GMM

training (number of Gaussians = 128) and performance of

QbE-STD is shown in Table 4. It can be seen that performance

of DAEM is comparable to EM. This might be due to initial

parameters that are set from vector quantization (which is

the common for all two DAEM approaches). Again, it can

be seen that VTLN-warped Gaussian posteriorgram improves

the performance as number of iterations increases. SWS 2013

QbE-STD task, the performance of EM and DAEM (ζ1 ) is

shown in Table 5. It can be observed that, VTLN-warped

Gaussian posteriorgram gave better performance than the

Gaussian posteriorgram.

V. SUMMARY AND CONCLUSIONS

In this study, GMM framework for VTLN warping factor

estimation and Gaussian posteriorgram computation is pre-

sented for the QbE-STD task. In GMM framework of VTLN

warping factor is essentially a grid search w.r.t. the likelihood.

This approach does not require transcription to estimate VTLN

warping factor. We estimate VTLN warping factor via the Lee-

Rose method that uses transcription in the HMM-likelihood

framework. We found a high correlation between the estimated

VTLN warping factors using both these methods. We exploited

GMM-based VTLN warping factor estimation technique for

QbE-STD tasks. GMM-based framework can also be exploited
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Table 4: Performance of DAEM on TIMIT QbE-STD

VTLN
EM DAEM (ζ1) DAEM (ζ2)

p@N MAP p@N MAP p@N MAP
MFCC PLP MFCC PLP MFCC PLP MFCC PLP MFCC PLP MFCC PLP

×
33.70 36.36 34.84 37.12 33.72 35.95 35.04 37.06 33.72 36.08 35.07 37.01

(41.39) (41.68) (44.06) (43.66) (41.73) (42.00) (44.55) (43.76) (41.73) (41.84) (44.57) (43.70)

X
37.95 41.11 40.40 42.95 37.77 40.91 40.41 42.96 37.84 40.96 40.39 43.00

(46.20) (50.69) (50.18) (52.58) (46.16) (50.25) (50.12) (51.92) (46.31) (50.40) (50.14) (52.11)

(× = No VTLN, 1-5=number of iterations used to estimate VTLN warping factor)

Table 5: Performance of DAEM on SWS 2013 QbE-STD (in

terms of MTWV)

VTLN
Dev Set Eval Set

EM DAEM EM DAEM
MFCC PLP MFCC PLP MFCC PLP MFCC PLP

× 0.188 0.195 0.188 0.200 0.138 0.145 0.139 0.146

X 0.209 0.222 0.211 0.222 0.159 0.160 0.159 0.160

to extract Gaussian posteriorgrams. Our future work is to ex-

plore the possible unsupervised approaches for VTLN warping

factor estimation such as Dynamic Frequency Warping (DFW)

[23] and elastic registration [24].
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