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Abstract— Signal processing based automated road condition
surveys (ARCS) system are the solution for the current unsafe,
subjective and labor-intensive manual road condition surveys.
Although extensive research has been conducted on methods for
ARCS, application by transportation agencies is still minimal.
In 2016, an ARCS system, developed by Georgia Tech, was
successfully implemented on a 4,184km highway system in
Georgia, USA. This paper presents the insights gained from
the project and also discusses the remaining challenges with a
focus on crack detection and classification. Crack fundamental
elements were implemented to obtain a flexible multi-scale
output. A combination of ARCS and QA/QC tools were used
to obtain high accuracy results while minimizing human effort.
Gaps in ARCS research, such as the lack of a crack detection
algorithm performance measure were revealed. The solutions
and new challenges revealed from this study will help ARCS
researchers to create solutions which can be readily applied by
transportation agencies.

I. INTRODUCTION

In 2015, the US Federal Highway Trust Fund spent USD
42.95 Billion [1] out of which the principal expenditure
was maintenance of existing highway infrastructure. Regular
road infrastructure condition surveys are required for opti-
mized infrastructure asset management. Several transporta-
tion agencies still conduct manual surveys in which data
collection and processing is done simultaneously and man-
ually. Semi-automated surveys have also become common,
in which the road data is collected using vehicle-mounted
sensors and processed manually later.

On-foot portions of manual surveys create a safety con-
cern. Semi-automated surveys can eliminate the safety con-
cern but the data still has to be manually processed. Hence,
manual and semi-automated approaches are expensive, time-
consuming and laborious. The next subsection describes a
specific example of a manual survey approach in detail.

A. Current Practice in Georgia

In the US state of Georgia, the Georgia Department of
Transportation (GDOT) conducts road infrastructure condi-
tion surveys annually. Specific protocols have been published
to guide the survey effort for different types of assets. For
example, the Computerized Pavement Condition Evaluation
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System (COPACES) protocol [2] is followed for evaluating
asphalt pavements.

The COPACES protocol requires a windshield survey of
the pavement condition, in which the road condition is as-
sessed by a passenger in a vehicle moving at highway speeds.
Additionally, a representative 30.5m (100 feet) section of
roadway has to be identified in every 1.6km (1 mile), on
which measurements have to be taken on foot. Moving traffic
barrier vehicles are used to provide protection at the cost
of mobility. Georgia has over 4,184 centerline kilometers of
interstates alone. After the surveys are completed, the survey
data has to be processed and aggregated to obtain project
ratings (scores from 0 to 100 to quantify asset condition)
which are used to guide maintenance, rehabilitation and
repair (MR&R) decisions.

B. Automated Road Condition Surveys

Automated Road Condition Survey (ARCS) systems pro-
vide a safe and efficient alternative to the manual and semi-
automated road condition survey procedures. ARCS systems
consist of data collection using vehicle-mounted sensors
and data processing using automated infrastructure condition
detection and classification algorithms. In US federal proto-
cols [3] as well as state protocols [2], [4], road pavement
condition is generally evaluated by measuring the extent
and severity of distresses on the roadway pavement, such
as cracking, rutting and potholes. Extensive research has
been conducted to develop methods for the detection and
classification of these pavement distresses, based on signals
(e.g. 2D images and 3D pavement data) captured from
vehicle-mounted sensors. However, ARCS is not widely used
by transportation agencies. One reason is that existing ARCS
products may not deliver the final protocol requirements and
further processing is required. Accuracy is also a problem.
For example, crack detection algorithms may not perform
well in all the pavement scenarios encountered in the field.
Hence, there is a gap between ARCS research and the needs
of transportation agencies, which is the focus of this paper.

This paper uses the successful implementation of an
ARCS system in 2016 for the Georgia interstate system to
gain insights and understand the challenges restricting the
widespread adoption of ARCS. This paper focuses on signal
processing based approaches to ARCS, which is the most
common approach.

This section explained the background, research need
and objective of this paper. The next section provides an
overview of the ARCS system implemented for the Georgia
interstate system. This is followed by the observations on
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Fig. 1. The Georgia Tech Survey Vehicle (GTSV)

the remaining challenges for ARCS adoption and their pos-
sible solutions. Finally, the conclusions and future research
recommendations are made.

II. ARCS SYSTEM FOR GEORGIA HIGHWAYS

The US state of Georgia maintains 4,184 centerline kilo-
meters of interstate highways. In 2016, an ARCS system
was implemented to monitor the road asphalt pavement
condition automatically. The system consists of three major
components:

1) A data collection procedure using the Georgia Tech
Survey Vehicle (GTSV) and 3D sensor technologies,
collecting both 2D images and 3D range data.

2) A data processing stage that yields aggregated road
condition data required by GDOT.

3) A suite of data visualization and analysis tools to aid
MR&R decision-making.

A. Data Collection Procedure
The Georgia Tech Sensing Vehicle (GTSV) shown in

figure 1 is used to collect the pavement surface data. The
GTSV, sponsored by the United States DOT, is a vehi-
cle equipped with emerging sensing technologies, including
high-resolution cameras, 3D laser imaging, light detection
and ranging (LiDAR), global positioning system (GPS), and
an inertial measurement unit (IMU) [5].

The two laser imaging units from INO/Pavemetrics are
mounted approximately 2 meters apart and 2.25 meters off
the ground at the back of the vehicle (figure 1). The sensors
are installed at a yaw angle of 10 degrees to avoid signal
crosstalk. A 50-mm overlap between the coverage of the two
sensors is designed to ensure complete coverage of the lane.

The resolution of the system is approximately 1 mm in
the transverse direction (x-axis), 5mm in the longitudinal
direction (y-axis), and 0.5 mm in the elevation direction
(z-axis). With this setup, the system acquires 4,160 3D
measurements per profile (2,080 per laser unit), which covers
approximately 4-m across the lane. The system stores an
image formed by every 1,000 profiles into a file that contains
both intensity and range data, as shown in Figure 2. The
intensity data in Figure 2a refers to the intensity of the
reflected laser beam from the pavement surface. The range
data in Figure 2b refers to the distance of the pavement
surface from the sensor height. In figure 2b, darker pixels
are farther from the sensor.

Fig. 2. Pavement Images Collected by Laser Crack Measurement System
(LCMS)

B. Data Processing Flow

Preprocessing steps are applied to synchronize and georef-
erence the data collected by multiple sensors. Our research
team has developed algorithms for the detection of major
pavement distresses—cracking, rutting and raveling—in the
past [6], [7], [8], [9], [10], [11]. The georeferenced range
images from the laser scanner serve as the input for these
algorithms, which detect and classify pavement distresses
in these images. The camera images are similarly used for
roadside features such as traffic signs [12].

For the 2016 iteration, some manual steps were also
required. Manual QA/QC checks were performed to ensure
data quality. For example, distresses on bridges had to be
removed as they are excluded in the COPACES protocol.
The COPACES protocol also collects other minor (rare)
distresses, such as potholes, corrugation and bleeding. These
were marked manually using a semi-automated approach.
These minor distresses can be detected from the GTSV’s
front facing camera, which can be processed much faster
manually than distresses on pavement images.

The final step is the aggregation of the detected pave-
ment distress data to various levels defined by the GDOT
COPACES protocol [2]. This results in ratings for GDOT
projects which are used to prioritize MR&R operations.
Additionally, the adverse effect of each type of distress on
the project rating, quantified as a deduct value, is used to
determine the optimal maintenance operation.

C. Data Visualization

After the data has been processed, it is necessary to
provide appropriate data visualization tools to navigate the
results. There are several existing data visualization tools
available. However, for this project, customized visualization
tools were developed.

Two examples are shown. CrackDigitizer (figure 3) is a
QA/QC tool to add or delete cracks and joints to pavement
images. CrackDigitizer is used to ensure the quality of crack
detection results. SlabViewer (figure 4) is a visualization tool
for displaying the properties of concrete slabs. SlabViewer is

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2086



Fig. 3. Visualization tool for pavement images showing a concrete joint

Fig. 4. Visualization tool for concrete slabs

useful for planning slab replacement as well as to study crack
growth on concrete slabs.

III. OBSERVATIONS

Several observations were made during the development
of the Georgia Interstate Highway ARCS system. Several
challenges were also found which are not addressed by most
ARCS research. Each of these observations and challenges
are explained in the subsections below. Although the focus
is on crack detection and classification, the concepts can be
extended to other pavement distresses as well.

A. Impacts of Distresses

The COPACES protocol collects information on ten types
of pavement distresses. The impact of pavement rating by
these distresses is given in figures 5. Clearly, cracking has the
highest impact on pavement condition, followed by rutting.

B. Deficiencies in Image-based Approaches

The 3D laser scanners used in the presented system are
much more expensive than traditional cameras at the same
resolution. Before the advent of 3D laser scanners, most
crack detection algorithms operated on traditional camera
images of the pavement surface. However, it has been

Fig. 5. Distribution of pavement distresses by deduct value

Fig. 6. Camera image of cracked pavement

observed that the features captured by traditional camera
images face several problems with respect to crack detection.

Lighting is the most important factor for camera images.
Most crack detection algorithms rely on the darkness of
cracks with respect to their neighboring pixels. Depending
on the lighting condition however, the appearance of the
pavement and cracks change drastically, making it extremely
difficult to find optimal parameters for the algorithms. Shad-
ows of nearby objects on the pavement is another problem
that crack detection algorithms have to overcome. It can be
seen in figure 6 that the pavement appearance constantly
changes due to lighting and shadow. 3D laser scanners
overcome this problem by ignoring the visual appearance
of the pavements and cracks, instead focusing on the depth
of the cracks with respect to the pavement surface.

Second, 2D camera images are also affected by the ap-
pearance of the pavement itself. Depending on the material
(asphalt or concrete) as well as surfacing of the pavement,
the pavement texture can appear drastically different on 2D
camera images. Again, 3D laser scanners reliance on depth,
not appearance, helps them overcome this problem easily. It
can be observed in figure 2 that the cracks are much clearer
on the range image than the intensity image.
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Fig. 7. Four severity levels of load cracking in COPACES

Fig. 8. Disconnected crack detection

C. Usability and Flexibility of Crack Detection Output

Despite a large volume of research on pavement crack
detection, fundamental problems remain in the approaches
used by most methods which make them unsuitable for use
in the field.

First, it is necessary to understand the objective of pave-
ment crack detection. For ARCS, the output of the crack
detection algorithms will be ultimately used to classify and
quantify pavement cracking according to a specific protocol.
For example, the COPACES protocol classifies load cracking
into four severity levels (figure 7). Pavement crack detection
is also used in automated crack sealing [13], [14]. Another
application of crack detection is to study the deterioration of
pavements due to crack growth over time. For all of the above
applications, it is necessary to obtain a detailed, flexible and
multi-scale crack model.

The majority of crack detection algorithms are histogram
or filtering based [15]. These algorithms are fast and can
work at multiple scales, but do not consider the long, salient
shape of the cracks. As a result, disconnected crack curves,
as shown in figure 8, are a common problem. Although
the disconnected crack curves can later be joined by further
image processing, it generally results in a tradeoff between
classifying noise as crack pixels (false positives) or losing
thin cracks (false negatives).

To overcome this problem, a minimal path based algorithm
[6] was used to develop the crack curves. Minimal path based
techniques search for the path between the extremities of the
cracks which minimize an objective function along the path.

Fig. 9. Crack Detection Result

In the case of cracks, we search for the path which has the
lowest depth throughout, which falls along the crack. This
results in a continuous crack curve output shown in figure 9.

These continuous crack curves are then used to model the
crack using crack fundamental elements (CFE) [16]. CFEs
provide a detailed, flexible and multi-scale model which can
be used to classify and quantify cracking according to various
protocols. CFEs can also be used for accurate crack sealing
path planning applications and to study crack growth over
time.

D. Lack of a Performance Metric

Many automated crack detection algorithms have been
developed, but they lack a standardized performance eval-
uation system. Hence, it is not possible to compare different
algorithms. Most papers perform their own validation tests.
However, these tests often fail to follow a scientifically
rigorous performance metric or use a pavement image dataset
consisting of diverse pavement conditions or both. In the
field, crack detection algorithms are subjected to different
pavement types, various lighting conditions and noise that
it may not be designed to handle. [17] elaborates on this
problem and presents a standardized performance evaluation
system for crack detection algorithms.

For example, Figure 10 shows range images collected
on three pavement types: (a) Dense-graded (DG) asphalt
pavement, (b) open-graded friction course (OGFC) asphalt
pavement and (c) Concrete pavement. Distress detection
algorithms need to be robust enough to perform in these
different pavement types. Figure 10d, 10e and 10f demon-
strate the result of the relaxation thresholding crack detection
algorithm on figures 10a, 10b and 10c respectively. There is
no crack present. The white pixels in figure 10d, 10e and 10f
have been classified as crack pixels by the algorithm. The
algorithm is clearly sensitive to the pavement texture. Hence,
it is necessary to consider the various pavement surface types
and pavement textures that distress detection algorithms are
likely to encounter in the field and design them accordingly.

A performance evaluation system is required for effective
performance evaluation and algorithm improvement. This
system should consist of a robust, quantitative performance
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Fig. 10. Performance of relaxation thresholding algorithm for crack
detection on pavement images

metric and a consistent pavement image dataset with diverse
pavement textures, crack conditions, widths and severity. The
system should also be able to provide a comprehensive and
quantitative evaluation of crack detection algorithms. Clearly,
the same concept can be extended to other distresses as well.

IV. CONCLUSION

The Georgia Interstate highway ARCS system presented in
this paper requires less than 44 hours of driving on interstates
to complete the data collection process. Only two members—
a driver and an operator—are required to complete the
survey. Typically, an annual survey can be completed in less
than two weeks with this approach. Because the members
do not have to stop at every mile and take measurements
on-foot, this approach is much safer than the manual survey
procedure. The system also improves the data quality by min-
imizing entry points for human error. The data visualization
tools also help transportation agencies gain further insights
into the ARCS results, aiding in MR&R decision-making.
QA/QC measures were also taken to ensure the quality of
the final results.

This paper identified remaining challenges in automated
pavement distress detection. Pavement cracking has been
used as an example to explain these challenges, but the
concepts can be extended to other pavement distresses as
well. The following research recommendations will help in
the advancement of ARCS:

• Due to its sensitivity to lighting conditions and pave-
ment appearance, camera images are not recommended
for large-scale ARCS. Depth-based images, obtained
from laser scanners, are independent of these factors.

• Crack detection methods should use a detailed, flexible
and multi-scale crack model for their output. The CFE
model [16] is one such solution.

• A standard performance measure should be developed
for pavement distresses, consisting of a quantitative
performance metric and a consistent dataset with diverse
pavement conditions.
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